Redirigiendo al acceso original de articulo en 19 segundos...
Inicio  /  Applied Sciences  /  Vol: 13 Par: 2 (2023)  /  Artículo
ARTÍCULO
TITULO

The Fast Detection of Crop Disease Leaves Based on Single-Channel Gravitational Kernel Density Clustering

Yifeng Ren    
Qingyan Li and Zhe Liu    

Resumen

Plant diseases and pests may seriously affect the yield of crops and even threaten the survival of human beings. The characteristics of plant diseases and insect pests are mainly reflected in the occurrence of lesions on crop leaves. Machine vision disease detection is of great significance for the early detection and prevention of plant diseases and insect pests. A fast detection method for lesions based on a single-channel gravitational kernel density clustering algorithm was designed to examine the complexity and ambiguity of diseased leaf images. Firstly, a polynomial was used to fit the R-channel feature histogram curve of a diseased leaf image in the RGB color space, and then the peak point and peak area of the fitted feature histogram curve were determined according to the derivative attribute. Secondly, the cluster numbers and the initial cluster center of the diseased leaf images were determined according to the peak area and peak point. Thirdly, according to the clustering center of the preliminarily determined diseased leaf images, the single-channel gravity kernel density clustering algorithm in this paper was used to achieve the rapid segmentation of the diseased leaf lesions. Finally, the experimental results showed that our method could segment the lesions quickly and accurately.

 Artículos similares

       
 
Sotirios Kontogiannis, Myrto Konstantinidou, Vasileios Tsioukas and Christos Pikridas    
In viticulture, downy mildew is one of the most common diseases that, if not adequately treated, can diminish production yield. However, the uncontrolled use of pesticides to alleviate its occurrence can pose significant risks for farmers, consumers, and... ver más
Revista: Information

 
Yohanes Yohanie Fridelin Panduman, Nobuo Funabiki, Evianita Dewi Fajrianti, Shihao Fang and Sritrusta Sukaridhoto    
In this paper, we have developed the SEMAR (Smart Environmental Monitoring and Analytics in Real-Time) IoT application server platform for fast deployments of IoT application systems. It provides various integration capabilities for the collection, displ... ver más
Revista: Information

 
Alejandro Valencia-Arias, Juan David González-Ruiz, Lilian Verde Flores, Luis Vega-Mori, Paula Rodríguez-Correa and Gustavo Sánchez Santos    
Machine learning and blockchain technology are fast-developing fields with implications for multiple sectors. Both have attracted a lot of interest and show promise in security, IoT, 5G/6G networks, artificial intelligence, and more. However, challenges ... ver más
Revista: Information

 
Juan Luis Pérez-Ruiz, Yu Tang, Igor Loboda and Luis Angel Miró-Zárate    
In the field of aircraft engine diagnostics, many advanced algorithms have been proposed over the last few years. However, there is still wide room for improvement, especially in the development of more integrated and complete engine health management sy... ver más
Revista: Aerospace

 
Mohammed Saïd Kasttet, Abdelouahid Lyhyaoui, Douae Zbakh, Adil Aramja and Abderazzek Kachkari    
Recently, artificial intelligence and data science have witnessed dramatic progress and rapid growth, especially Automatic Speech Recognition (ASR) technology based on Hidden Markov Models (HMMs) and Deep Neural Networks (DNNs). Consequently, new end-to-... ver más
Revista: Aerospace