Resumen
We enhanced the agro-hydrologic VegET model to include snow accumulation and melt processes and the separation of runoff into surface runoff and deep drainage. Driven by global weather datasets and parameterized by land surface phenology (LSP), the enhanced VegET model was implemented in the cloud to simulate daily soil moisture (SM), actual evapotranspiration (ETa), and runoff (R) for the conterminous United States (CONUS) and the Greater Horn of Africa (GHA). Evaluation of the VegET model with independent data showed satisfactory performance, capturing the temporal variability of SM (Pearson correlation r: 0.22?0.97), snowpack (r: 0.86?0.88), ETa (r: 0.41?0.97), and spatial variability of R (r: 0.81?0.90). Absolute magnitudes showed some biases, indicating the need of calibrating the model for water budget analysis. The seasonal Landscape Water Requirement Satisfaction Index (L-WRSI) for CONUS and GHA showed realistic depictions of drought hazard extent and severity, indicating the usefulness of the L-WRSI for the convergence of an evidence toolkit used by the Famine Early Warning System Network to monitor potential food insecurity conditions in different parts of the world. Using projected weather datasets and landcover-based LSP, the VegET model can be used not only for global monitoring of drought conditions, but also for evaluating scenarios on the effect of a changing climate and land cover on agriculture and water resources.