Resumen
Digital elevation models (DEMs) are a widely used form of topographic information, with some of the most popular being the Shuttle Radar Topography Mission (SRTM) DEM and the Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Digital Elevation Model (ASTER GDEM). These two sources of topographical information are the main constituents of the European Union Digital Elevation Model (EU-DEM), which is a relatively new dataset of the EU?s Copernicus Land Monitoring Service. In this context, the purpose of this study was to validate EU-DEM for its vertical accuracy and to compare it with SRTM DEM and ASTER GDEM data. This was achieved in a Geographic Information System (GIS) environment, using extensive?in the order of tens of thousands of points?geodetic Global Navigation Satellite System (GNSS) measurements and appropriate pre-processing steps. The absolute elevation errors results had a Root Mean Square Error (RMSE) of 2.7 m at a 90% confidence level and characterize the performance of EU-DEM from local to regional scale, generally confirming that it is an enhanced source of elevation information when compared with its predecessors.