Redirigiendo al acceso original de articulo en 22 segundos...
ARTÍCULO
TITULO

Multi-Parameter Estimation of Average Speed in Road Networks Using Fuzzy Control

Johanna Guth    
Sven Wursthorn and Sina Keller    

Resumen

Average speed is crucial for calculating link travel time to find the fastest path in a road network. However, readily available data sources like OpenStreetMap (OSM) often lack information about the average speed of a road. However, OSM contains other road information which enables an estimation of average speed in rural regions. In this paper, we develop a Fuzzy Framework for Speed Estimation (Fuzzy-FSE) that employs fuzzy control to estimate average speed based on the parameters road class, road slope, road surface and link length. The OSM road network and, optionally, a digital elevation model (DEM) serve as free-to-use and worldwide available input data. The Fuzzy-FSE consists of two parts: (a) a rule and knowledge base which decides on the output membership functions and (b) multiple Fuzzy Control Systems which calculate the output average speeds. The Fuzzy-FSE is applied exemplary and evaluated for the BioBío and Maule region in central Chile and for the north of New South Wales in Australia. Results demonstrate that, even using only OSM data, the Fuzzy-FSE performs better than existing methods such as fixed speed profiles. Compared to these methods, the Fuzzy-FSE improves the speed estimation between 2% to 12%. In future work, we will investigate the potential of data-driven machine learning methods to estimate average speed. The applied datasets and the source code of the Fuzzy-FSE are available via GitHub.

 Artículos similares

       
 
Yao-Liang Chung    
Against the backdrop of rising road traffic accident rates, measures to prevent road traffic accidents have always been a pressing issue in Taiwan. Road traffic accidents are mostly caused by speeding and roadway obstacles, especially in the form of rock... ver más
Revista: Future Internet

 
Minmeng Tang, Tri Dev Acharya and Deb A. Niemeier    
Black carbon (BC) is a significant source of air pollution since it impacts public health and climate change. Understanding its distribution in the complex urban environment is challenging. We integrated a land use model with four machine learning models... ver más

 
Yongchao Song, Tao Huang, Xin Fu, Yahong Jiang, Jindong Xu, Jindong Zhao, Weiqing Yan and Xuan Wang    
Lane line detection is a fundamental and critical task for geographic information perception of driverless and advanced assisted driving. However, the traditional lane line detection method relies on manual adjustment of parameters, and has poor universa... ver más

 
Borja Alonso, Giuseppe Musolino, Corrado Rindone and Antonino Vitetta    
The reduction of urban congestion represents one of the main challenges for increasing sustainability. This implies the necessity to increase our knowledge of urban mobility and traffic. The fundamental diagram (FD) is a possible tool for analyzing the t... ver más

 
Mohammed Imran Basheer Ahmed, Rim Zaghdoud, Mohammed Salih Ahmed, Razan Sendi, Sarah Alsharif, Jomana Alabdulkarim, Bashayr Adnan Albin Saad, Reema Alsabt, Atta Rahman and Gomathi Krishnasamy    
To constructively ameliorate and enhance traffic safety measures in Saudi Arabia, a prolific number of AI (Artificial Intelligence) traffic surveillance technologies have emerged, including Saher, throughout the past years. However, rapidly detecting a v... ver más