Resumen
Information on the mixed use of buildings helps understand the status of mixed-use urban vertical land and assists in urban planning decisions. Although a few studies have focused on this topic, the methods they used are quite complex and require manual intervention in extracting different function patterns of buildings, while building recognition rates remain unsatisfying. In this paper, we propose a new method to infer the mixed use of buildings based on a tensor decomposition algorithm, which integrates information from both high-resolution remote sensing images and social sensing data. We selected the Tianhe District of Guangzhou, China to validate our method. The results show that the recognition rate of buildings can reach 98.67%, with an average recognition accuracy of 84%. Our study proves that the tensor decomposition algorithm can extract different function patterns of buildings unsupervised, while remote sensing data can provide key information for inferring building functions. The tensor decomposition-based method can serve as an effective and efficient way to infer the mixed use of buildings, which can achieve better results with simpler steps.