Redirigiendo al acceso original de articulo en 22 segundos...
ARTÍCULO
TITULO

Study on Hydrodynamic Characteristics and Environmental Response in Shantou Offshore Area

Yuezhao Tang    
Yang Wang    
Enjin Zhao    
Jiaji Yi    
Kecong Feng    
Hongbin Wang and Wanhu Wang    

Resumen

As a coastal trading city in China, Shantou has complex terrain and changeable sea conditions in its coastal waters. In order to better protect the coastal engineering and social property along the coast, based on the numerical simulation method, this paper constructed a detailed hydrodynamic model of the Shantou sea area, and the measured tide elevation and tidal current were used to verify the accuracy of the model. Based on the simulation results, the tide elevation and current in the study area were analyzed, including the flood and ebb tides of astronomical spring tide, the flood and ebb tides of astronomical neap tide, the high tide, and the low tide. In order to find the main tidal constituent types in this sea, the influence of different tidal constituents on tide elevation and tidal current in the study area was analyzed. At the same time, the storm surge model of the study area was constructed, and the flow field under Typhoon ?Mangkhut? in the study area was simulated by using the real recorded data. Typhoon wind fields with different recurrence periods and intensities were constructed to simulate the change in the flow field, the sea water level, and the disaster situation along the coast. The results showed that under normal sea conditions, the sea water flows from southwest to northeast at flood tide and the flow direction is opposite at ebb tide. The tidal range is large in the northwest and small in the southeast of the study area. The tides in the study area are mainly controlled by M2, S2, K1, and O1 tidal constituents, but N2, K2, P1, and Q1 tidal constituents have significant effects on the high water level. The water level caused by typhoons increases significantly along the coast of Shantou City. In the west area of the Rong River estuary, a typhoon with a lower central pressure than 910 hPa may induce a water increase of more than 2 m.

 Artículos similares

       
 
Bon-Ho Gu, Seung-Buhm Woo, Jae-Il Kwon, Sung-Hwan Park and Nam-Hoon Kim    
This study presents a comprehensive analysis of contaminant transport in estuarine environments, focusing on the impact of tidal creeks and flats. The research employs advanced hydrodynamic models with irregular grid systems and conducts a detailed resid... ver más
Revista: Water

 
Yangxin Zhang, Jiangmei Zhang, Tuantuan Liu, Xinghua Feng, Tengxiang Xie and Haolin Liu    
Many nuclear power plants have been built along China?s coasts, and the migration and diffusion of radioactive nuclides in coastal harbours is very concerning. In this study, considering the decay and free diffusion of radioactive nuclides, a local hydro... ver más
Revista: Water

 
Yunfei Yang, Zhicheng Zhang, Jiapeng Zhao, Bin Zhang, Lei Zhang, Qi Hu and Jianglong Sun    
Resistance serves as a critical performance metric for ships. Swift and accurate resistance prediction can enhance ship design efficiency. Currently, methods for determining ship resistance encompass model tests, estimation techniques, and computational ... ver más

 
Chinh Lieou, Serge Jolicoeur, Thomas Guyondet, Stéphane O?Carroll and Tri Nguyen-Quang    
This study examines the hydrodynamic regimes in Shediac Bay, located in New Brunswick, Canada, with a focus on the breach in the Grande-Digue sand spit. The breach, which was developed in the mid-1980s, has raised concerns about its potential impacts on ... ver más

 
Zhipeng Zang, Zhuo Fang, Kuan Qiao, Limeng Zhao and Tongming Zhou    
A three-dimensional numerical model was established based on ANSYS-AQWA (R19.0) software for the purpose of analyzing the hydrodynamic characteristics of a floating breakwater. This study examines three distinct floating breakwaters with different cross-... ver más