Redirigiendo al acceso original de articulo en 17 segundos...
Inicio  /  Algorithms  /  Vol: 15 Par: 1 (2022)  /  Artículo
ARTÍCULO
TITULO

Transfer Learning for Operator Selection: A Reinforcement Learning Approach

Rafet Durgut    
Mehmet Emin Aydin and Abdur Rakib    

Resumen

In the past two decades, metaheuristic optimisation algorithms (MOAs) have been increasingly popular, particularly in logistic, science, and engineering problems. The fundamental characteristics of such algorithms are that they are dependent on a parameter or a strategy. Some online and offline strategies are employed in order to obtain optimal configurations of the algorithms. Adaptive operator selection is one of them, and it determines whether or not to update a strategy from the strategy pool during the search process. In the field of machine learning, Reinforcement Learning (RL) refers to goal-oriented algorithms, which learn from the environment how to achieve a goal. On MOAs, reinforcement learning has been utilised to control the operator selection process. However, existing research fails to show that learned information may be transferred from one problem-solving procedure to another. The primary goal of the proposed research is to determine the impact of transfer learning on RL and MOAs. As a test problem, a set union knapsack problem with 30 separate benchmark problem instances is used. The results are statistically compared in depth. The learning process, according to the findings, improved the convergence speed while significantly reducing the CPU time.

 Artículos similares

       
 
Nan Lao Ywet, Aye Aye Maw, Tuan Anh Nguyen and Jae-Woo Lee    
Urban Air Mobility (UAM) emerges as a transformative approach to address urban congestion and pollution, offering efficient and sustainable transportation for people and goods. Central to UAM is the Operational Digital Twin (ODT), which plays a crucial r... ver más
Revista: Aerospace

 
Peranut Nimitsurachat and Peter Washington    
Emotion recognition models using audio input data can enable the development of interactive systems with applications in mental healthcare, marketing, gaming, and social media analysis. While the field of affective computing using audio data is rich, a m... ver más
Revista: AI

 
Georgios Karantaidis and Constantine Kotropoulos    
The detection of computer-generated (CG) multimedia content has become of utmost importance due to the advances in digital image processing and computer graphics. Realistic CG images could be used for fraudulent purposes due to the deceiving recognition ... ver más
Revista: Information

 
Hang Li, Shengjie Zhao and Hao Deng    
The extraction of community-scale green infrastructure (CSGI) poses challenges due to limited training data and the diverse scales of the targets. In this paper, we reannotate a training dataset of CSGI and propose a three-stage transfer learning method ... ver más
Revista: Information

 
Hassen Louati, Ali Louati, Rahma Lahyani, Elham Kariri and Abdullah Albanyan    
Responding to the critical health crisis triggered by respiratory illnesses, notably COVID-19, this study introduces an innovative and resource-conscious methodology for analyzing chest X-ray images. We unveil a cutting-edge technique that marries neural... ver más
Revista: Information