Redirigiendo al acceso original de articulo en 19 segundos...
Inicio  /  Geosciences  /  Vol: 10 Par: 9 (2020)  /  Artículo
ARTÍCULO
TITULO

Sediment Bed-Load Transport: A Standardized Notation

Ulrich Zanke and Aron Roland    

Resumen

Morphodynamic processes on Earth are a result of sediment displacements by the flow of water or the action of wind. An essential part of sediment transport takes place with permanent or intermittent contact with the bed. In the past, numerous approaches for bed-load transport rates have been developed, based on various fundamental ideas. For the user, the question arises which transport function to choose and why just that one. Different transport approaches can be compared based on measured transport rates. However, this method has the disadvantage that any measured data contains inaccuracies that correlate in different ways with the transport functions under comparison. Unequal conditions also exist if the factors of transport functions under test are fitted to parts of the test data set during the development of the function, but others are not. Therefore, a structural formula comparison is made by transferring altogether 13 transport functions into a standardized notation. Although these formulas were developed from different perspectives and with different approaches, it is shown that these approaches lead to essentially the same basic formula for the main variables. These are shear stress and critical shear stress. However, despite the basic structure of these 13 formulas being the same, their coefficients vary significantly. The reason for that variation and the possible effect on the bandwidth of results is identified and discussed. A further result is the finding that not only shear stress affects bed-load transport rates as is expressed by many transport formulas. Transport rates are also significantly affected by the internal friction of the moving sediment as well as by the friction fluid-bed. In the case of not fully rough flow conditions, also viscous effects and thus the Reynolds number becomes of importance.

 Artículos similares

       
 
Evgenia V. Dorokhova, Francisco J. Rodríguez-Tovar, Dmitry V. Dorokhov, Liubov A. Kuleshova, Anxo Mena, Tatiana Glazkova and Viktor A. Krechik    
Multidisciplinary studies have allowed us to describe the abiotic landscapes and, thus, reveal the ichnological and benthic foraminifera trends in a deep-water gateway. Mesoscale landscape mapping is presented based on the bathymetric position index, sub... ver más
Revista: Geosciences

 
Christopher Gomez, Yoshinori Shinohara, Haruka Tsunetaka, Norifumi Hotta, Balazs Bradak and Yuichi Sakai    
In the aftermath of pyroclastic density current-dominated eruptions, lahars are the main geomorphic agent, but at the decadal scale, different sets of processes take place in the volcanic sediment cascade. At Unzen volcano, in the Gokurakudani gully, we ... ver más
Revista: Geosciences

 
Gemma Aiello, Marina Iorio, Flavia Molisso and Marco Sacchi    
Submarine canyons are geomorphologic lineaments engraving the slope/outer shelf of continental margins. These features are often associated with significant geologic hazard when they develop close to densely populated coastal zones. The seafloor of Naple... ver más
Revista: Geosciences

 
Koji Minoura and Norihiro Nakamura    
The Pacific coast of the Shimokita Peninsula, Northeast Japan, is occupied by one of the larger dune complexes in Japan. This coastal aeolian dune complex developed during the Holocene in a monsoon-influenced temperate climatic belt. The stratigraphic an... ver más
Revista: Geosciences

 
Nicoletta Leonardi, Xiaorong Li and Iacopo Carnacina    
The impact of tide-induced morphological changes and water level variations on the sediment transport in a tidally dominated system has been investigated using the numerical model Delft3D and South-East England as a test case. The goal of this manuscript... ver más
Revista: Geosciences