Redirigiendo al acceso original de articulo en 23 segundos...
ARTÍCULO
TITULO

Extracting Objects? Spatial?Temporal Information Based on Surveillance Videos and the Digital Surface Model

Shijing Han    
Xiaorui Dong    
Xiangyang Hao and Shufeng Miao    

Resumen

Surveillance systems focus on the image itself, mainly from the perspective of computer vision, which lacks integration with geographic information. It is difficult to obtain the location, size, and other spatial information of moving objects from surveillance systems, which lack any ability to couple with the geographical environment. To overcome such limitations, we propose a fusion framework of 3D geographic information and moving objects in surveillance video, which provides ideas for related research. We propose a general framework that can extract objects? spatial?temporal information and visualize object trajectories in a 3D model. The framework does not rely on specific algorithms for determining the camera model, object extraction, or the mapping model. In our experiment, we used the Zhang Zhengyou calibration method and the EPNP method to determine the camera model, YOLOv5 and deep SORT to extract objects from a video, and an imaging ray intersection with the digital surface model to locate objects in the 3D geographical scene. The experimental results show that when the bounding box can thoroughly outline the entire object, the maximum error and root mean square error of the planar position are within 31 cm and 10 cm, respectively, and within 10 cm and 3 cm, respectively, in elevation. The errors of the average width and height of moving objects are within 5 cm and 2 cm, respectively, which is consistent with reality. To our knowledge, we first proposed the general fusion framework. This paper offers a solution to integrate 3D geographic information and surveillance video, which will not only provide a spatial perspective for intelligent video analysis, but also provide a new approach for the multi-dimensional expression of geographic information, object statistics, and object measurement.

 Artículos similares

       
 
Huapeng Tang, Danyang Qin, Jiaqiang Yang, Haoze Bie, Mengying Yan, Gengxin Zhang and Lin Ma    
Frame buildings as important nodes of urban space. The include high-speed railway stations, airports, residences, and office buildings, which carry various activities and functions. Due to illumination irrationality and mutual occlusion between complex o... ver más

 
Yonghong Zhang, Huajun Zhao, Guangyi Ma, Donglin Xie, Sutong Geng, Huanyu Lu, Wei Tian and Kenny Thiam Choy Lim Kam Sian    
The classification of land use information is important for land resource management. With the purpose of extracting precise spatial information, we present a novel land use classification model based on a mixed attention module and adjustable feature en... ver más

 
Chengkun Zhang, Yiran Zhang, Jiajun Zhang, Junwei Yao, Hongjiu Liu, Tao He, Xinyu Zheng, Xingyu Xue, Liang Xu, Jing Yang, Yuanyuan Wang and Liuchang Xu    
In recent years, the Chinese tourism industry has developed rapidly, leading to significant changes in the relationship between people and space patterns in scenic regions. To attract more tourists, the surrounding environment of a scenic region is usual... ver más

 
Fahd A. Ghanem, M. C. Padma and Ramez Alkhatib    
The rapid expansion of social media platforms has resulted in an unprecedented surge of short text content being generated on a daily basis. Extracting valuable insights and patterns from this vast volume of textual data necessitates specialized techniqu... ver más
Revista: Future Internet

 
Syed Raza Bashir, Shaina Raza and Vojislav B. Misic    
Recommending points of interest (POI) is a challenging task that requires extracting comprehensive location data from location-based social media platforms. To provide effective location-based recommendations, it is important to analyze users? historical... ver más
Revista: Future Internet