Redirigiendo al acceso original de articulo en 16 segundos...
Inicio  /  Applied Sciences  /  Vol: 13 Par: 18 (2023)  /  Artículo
ARTÍCULO
TITULO

A New Optimization Design Method of Multi-Objective Indoor Air Supply Using the Kriging Model and NSGA-II

Yu Guo    
Yukun Wang    
Yi Cao and Zhengwei Long    

Resumen

Air supply design for indoor air.

 Artículos similares

       
 
Chuanxiang Song, Seong-Yoon Shin and Kwang-Seong Shin    
This study introduces a novel approach named the Dynamic Feedback-Driven Learning Optimization Framework (DFDLOF), aimed at personalizing educational pathways through machine learning technology. Our findings reveal that this framework significantly enha... ver más
Revista: Applied Sciences

 
Na Wei, Yuxin Peng, Kunming Lu, Guixing Zhou, Xingtao Guo and Minghui Niu    
The parallel reservoirs in the upper reach of the Hanjiang River are key projects for watershed management, development, and protection. The optimal operation of parallel reservoirs is a multiple-stage, multiple-objective, and multiple-decision attribute... ver más
Revista: Applied Sciences

 
Jinxiong Gao, Xu Geng, Yonghui Zhang and Jingbo Wang    
Underwater autonomous path planning is a critical component of intelligent underwater vehicle system design, especially for maritime conservation and monitoring missions. Effective path planning for these robots necessitates considering various constrain... ver más
Revista: Applied Sciences

 
Mojtaba Nayyeri, Modjtaba Rouhani, Hadi Sadoghi Yazdi, Marko M. Mäkelä, Alaleh Maskooki and Yury Nikulin    
One of the main disadvantages of the traditional mean square error (MSE)-based constructive networks is their poor performance in the presence of non-Gaussian noises. In this paper, we propose a new incremental constructive network based on the correntro... ver más
Revista: Algorithms

 
Ana Corceiro, Nuno Pereira, Khadijeh Alibabaei and Pedro D. Gaspar    
The global population?s rapid growth necessitates a 70% increase in agricultural production, posing challenges exacerbated by weed infestation and herbicide drawbacks. To address this, machine learning (ML) models, particularly convolutional neural netwo... ver más
Revista: Algorithms