Resumen
Many nations across the globe face the challenge of housing deficit. Modular integrated construction (MiC), which has the highest level of prefabrication among off-site construction manufacturing (OSM), has been adopted as a fast and reliable construction method to address the housing deficit. Previous studies have assessed the productivity of the prefabrication stage of MiC, while investigations into the productivity of the MiC installation process with the consideration of pragmatic factors, especially for high-rise buildings, are lacking in the literature. Therefore, this study contributes by (1) developing a discrete-event simulation (DES) model to assess the productivity of MiC installation while considering pragmatic factors (e.g., weather conditions, topography, work dimension, etc.) and management conditions (e.g., workers? motivation, training, equipment maintenance, etc.); (2) developing a mathematical model to understand the relationship between productivity and various resources utilized in MiC installation. After verifying and validating the DES model, it was applied to a case study in Hong Kong. A sensitivity analysis using a full factorial experiment design was conducted to identify the parameters (e.g., number of trucks, tower cranes, different crews) that significantly affect a number of performance measures, such as the project duration, productivity, and total costs. Furthermore, the mathematical model shows high prediction accuracy, as the mean absolute percentage error is 8.93%. This study would help construction practitioners in their decision-making process, while planning a project by providing them with a model that can predict the productivity of the MiC installation process before and during the project implementation.