Resumen
Landslides not only cause great economic and human life losses but also seriously affect the safe operation of infrastructure such as highways. Rainfall is an important condition for inducing landslides, especially when a fault and weak interlayer exist on the slope, which can easily transform into a landslide and cause instability under the action of rainfall. To explore the effects of a soft interlayer, a fault, and extreme rainfall on slope stability, this paper takes the landslide on the right side of the G104 Jinglan Line in Shengzhou City, Shaoxing City, Zhejiang Province, China, as an example. The cause, failure mechanism, and characteristics of the landslide are analyzed through field investigation and borehole exploration in the landslide area. The slope is simulated by numerical analysis, and the stability of the landslide under natural conditions and extreme rainstorm conditions is calculated using the strength reduction method. The stability of the slope before and after treatment is compared, and the effectiveness of the treatment measures is verified by combining the field monitoring data. At the same time, the complex geological structure and rainfall are considered to have been the main factors leading to the G104 landslide. Near the fault, the weak interlayer of the landslide was easily disturbed, the deformation trend of the deep displacement was consistent with rainfall, and the axial force of the anti-slide piles at the weak interlayer was correspondingly large. For a wedge rock slope, ?excavation unloading? and ?prestressed anchor + prestressed anchor cable + anti-slide pile? are effective treatments. This paper reveals the effects of a weak interlayer, a fault, and strong rainfall on a rocky high slope, providing predictions of instability modes and time evolution patterns for similar complex geological slopes under rainfall infiltration conditions and providing references for their treatment measures.