Redirigiendo al acceso original de articulo en 18 segundos...
Inicio  /  Applied Sciences  /  Vol: 13 Par: 1 (2023)  /  Artículo
ARTÍCULO
TITULO

TKIFRPM: A Novel Approach for Topmost-K Identical Frequent Regular Patterns Mining from Incremental Datasets

Saif Ur Rehman    
Muhammad Altaf Khan    
Habib Un Nabi    
Shaukat Ali    
Noha Alnazzawi and Shafiullah Khan    

Resumen

The regular frequent pattern mining (RFPM) approaches are aimed to discover the itemsets with significant frequency and regular occurrence behavior in a dataset. However, these approaches mainly suffer from the following two issues: (1) setting the frequency threshold parameter for the discovery of regular frequent patterns technique is not an easy task because of its dependency on the characteristics of a dataset, and (2) RFPM approaches are designed to mine patterns from the static datasets and are not able to mine dynamic datasets. This paper aims to solve these two issues by proposing a novel top-K identical frequent regular patterns mining (TKIFRPM) approach to function on online datasets. The TKIFRPM maintains a novel synopsis data structure with item support index tables (ISI-tables) to keep summarized information about online committed transactions and dataset updates. The mining operation can discover top-K regular frequent patterns from online data stored in the ISI-tables. The TKIFRPM explores the search space in recursive depth-first order and applies a novel progressive node?s sub-tree pruning strategy to rapidly eliminate a complete infrequent sub-tree from the search space. The TKIFRPM is compared with the MTKPP approach, and it found that it outperforms its counterpart in terms of runtime and memory usage to produce designated topmost-K frequent regular pattern mining on the datasets following incremental updates.

 Artículos similares

       
 
Hao An, Ruotong Ma, Yuhan Yan, Tailai Chen, Yuchen Zhao, Pan Li, Jifeng Li, Xinyue Wang, Dongchen Fan and Chunli Lv    
This paper aims to address the increasingly severe security threats in financial systems by proposing a novel financial attack detection model, Finsformer. This model integrates the advanced Transformer architecture with the innovative cluster-attention ... ver más
Revista: Applied Sciences

 
Zekâi Sen    
In the open literature, there are numerous studies on the normal and extreme (flood and drought) behavior of wet and dry periods based on the understanding of the standard precipitation index (SPI), which provides a series of categorizations by consideri... ver más
Revista: Water

 
Jawaher Alghamdi, Yuqing Lin and Suhuai Luo    
The detection of fake news has emerged as a crucial area of research due to its potential impact on society. In this study, we propose a robust methodology for identifying fake news by leveraging diverse aspects of language representation and incorporati... ver más
Revista: Information

 
Chuanxiang Song, Seong-Yoon Shin and Kwang-Seong Shin    
This study introduces a novel approach named the Dynamic Feedback-Driven Learning Optimization Framework (DFDLOF), aimed at personalizing educational pathways through machine learning technology. Our findings reveal that this framework significantly enha... ver más
Revista: Applied Sciences

 
Carlos Munoz, Kirsten Schröder, Bernhard Henes, Jane Hubert, Sébastien Leblond, Stéphane Poigny, Ralf Reski and Franziska Wandrey    
The moss Physcomitrium patens (P. patens), formerly known as Physcomitrella patens, has ascended to prominence as a pivotal model organism in plant biology. Its simplicity in structure and life cycle, coupled with genetic amenability, has rendered it ind... ver más
Revista: Applied Sciences