Redirigiendo al acceso original de articulo en 18 segundos...
Inicio  /  Buildings  /  Vol: 12 Par: 6 (2022)  /  Artículo
ARTÍCULO
TITULO

Experimental Study on the Bond-Slip Behavior of Steel-Steel Fiber Recycled Aggregate Concrete

Rui Ren    
Xinjiang Xu    
Dongbo Li    
Li Fan    
Qinlong Liu and Xiguang Liu    

Resumen

To study the bond?slip behavior of steel?steel fiber recycled aggregate concrete, push-out tests of 16 specimens were carried out using steel fiber volume ratio, steel fiber aspect ratio, steel protective layer thickness and steel embedded length as the design parameters. In addition, the crack patterns, steel strain distribution, and load?slip curves were studied, in addition to the bond strengths of the interface between the steel?steel fiber and recycled aggregate concrete. The results showed that the fracture cracks of the specimens mainly included bond cracks and expansion cracks. For the load increase stage, the maximum strain of the steel flange was near the loading end of the steel and decreased toward the free end, while the strain changed linearly for the load descending stage. The bond?slip process between the steel?steel fiber and recycled aggregate concrete included five stages, which consisted of slight-slip, slow-slip, accelerated-slip, the sharp-slip and load-steep-drop stage, and gentle-slip stage. Additionally, the influencing factors of bond strength were analyzed, where the bond strength increased first and then decreased with increasing steel fiber volume and steel fiber aspect ratios, and the bond strength increased with increasing steel protective layer thickness. The ultimate bond strength decreased slightly with increasing steel embedded length. Finally, the equation for calculating the characteristic bond strength of the steel?steel fiber recycled aggregate concrete was established, which showed that the calculation results were in good agreement with the test results.

 Artículos similares

       
 
Zhike Zou, Longcang Shu, Xing Min and Esther Chifuniro Mabedi    
The artificial recharge of stormwater is an effective approach for replenishing aquifer and reduce urban waterlogging, but prone to clogging by suspended particles (SP) that are highly heterogeneously sized. In this paper, the transport and deposition of... ver más
Revista: Water

 
Zuhier Alakayleh, Xing Fang and T. Prabhakar Clement    
This study aims at furthering our understanding of the Modified Philip?Dunne Infiltrometer (MPDI), which is used to determine the saturated hydraulic conductivity Ks and the Green?Ampt suction head ? at the wetting front. We have developed a forward-mode... ver más
Revista: Water

 
Ewa Stanczyk-Mazanek, Longina Stepniak and Urszula Kepa    
In this paper, we discuss the effect sewage sludge (SS) application has on the contamination of polycyclic aromatic hydrocarbons in fertilized soils and groundwater. Morver, the contents of these compounds in plant biomass was analyzed. For six months, c... ver más
Revista: Water

 
Xiaoni Yang, Juanjuan Ma, Yongye Li, Xihuan Sun, Xiaomeng Jia and Yonggang Li    
Hydraulic transportation of the piped carriage is a new energy-saving and environmentally-friendly transportation mode. There are two main states in the conveying process, stationary and moving. In the process of hydraulic transportation of the piped car... ver más
Revista: Water

 
Longfei Zhang, Xiang Lan, Kechuan Wu and Wenzheng Yu    
When subjected to seismic activity, tall isolated buildings with a high aspect ratio are susceptible to overturning as a result of the failure of rubber isolation bearings under tension. In order to address this issue, a guided-rail tension device (GR) h... ver más
Revista: Buildings