Redirigiendo al acceso original de articulo en 22 segundos...
Inicio  /  Computers  /  Vol: 12 Par: 9 (2023)  /  Artículo
ARTÍCULO
TITULO

Novel Deep Feature Fusion Framework for Multi-Scenario Violence Detection

Sabah Abdulazeez Jebur    
Khalid A. Hussein    
Haider Kadhim Hoomod and Laith Alzubaidi    

Resumen

Detecting violence in various scenarios is a difficult task that requires a high degree of generalisation. This includes fights in different environments such as schools, streets, and football stadiums. However, most current research on violence detection focuses on a single scenario, limiting its ability to generalise across multiple scenarios. To tackle this issue, this paper offers a new multi-scenario violence detection framework that operates in two environments: fighting in various locations and rugby stadiums. This framework has three main steps. Firstly, it uses transfer learning by employing three pre-trained models from the ImageNet dataset: Xception, Inception, and InceptionResNet. This approach enhances generalisation and prevents overfitting, as these models have already learned valuable features from a large and diverse dataset. Secondly, the framework combines features extracted from the three models through feature fusion, which improves feature representation and enhances performance. Lastly, the concatenation step combines the features of the first violence scenario with the second scenario to train a machine learning classifier, enabling the classifier to generalise across both scenarios. This concatenation framework is highly flexible, as it can incorporate multiple violence scenarios without requiring training from scratch with additional scenarios. The Fusion model, which incorporates feature fusion from multiple models, obtained an accuracy of 97.66% on the RLVS dataset and 92.89% on the Hockey dataset. The Concatenation model accomplished an accuracy of 97.64% on the RLVS and 92.41% on the Hockey datasets with just a single classifier. This is the first framework that allows for the classification of multiple violent scenarios within a single classifier. Furthermore, this framework is not limited to violence detection and can be adapted to different tasks.

 Artículos similares

       
 
Tomasz Walczyna and Zbigniew Piotrowski    
The proliferation of ?Deep fake? technologies, particularly those facilitating face-swapping in images or videos, poses significant challenges and opportunities in digital media manipulation. Despite considerable advancements, existing methodologies ofte... ver más
Revista: Applied Sciences

 
Juyao Wei, Zhenggang Lu, Zheng Yin and Zhipeng Jing    
This paper presents a novel data-driven multiagent reinforcement learning (MARL) controller for enhancing the running stability of independently rotating wheels (IRW) and reducing wheel?rail wear. We base our active guidance controller on the multiagent ... ver más
Revista: Applied Sciences

 
Hao An, Ruotong Ma, Yuhan Yan, Tailai Chen, Yuchen Zhao, Pan Li, Jifeng Li, Xinyue Wang, Dongchen Fan and Chunli Lv    
This paper aims to address the increasingly severe security threats in financial systems by proposing a novel financial attack detection model, Finsformer. This model integrates the advanced Transformer architecture with the innovative cluster-attention ... ver más
Revista: Applied Sciences

 
Shubin Wang, Yuanyuan Chen and Zhang Yi    
Diabetic retinopathy is a prevalent eye disease that poses a potential risk of blindness. Nevertheless, due to the small size of diabetic retinopathy lesions and the high interclass similarity in terms of location, color, and shape among different lesion... ver más
Revista: Applied Sciences

 
Carlos Munoz, Kirsten Schröder, Bernhard Henes, Jane Hubert, Sébastien Leblond, Stéphane Poigny, Ralf Reski and Franziska Wandrey    
The moss Physcomitrium patens (P. patens), formerly known as Physcomitrella patens, has ascended to prominence as a pivotal model organism in plant biology. Its simplicity in structure and life cycle, coupled with genetic amenability, has rendered it ind... ver más
Revista: Applied Sciences