Redirigiendo al acceso original de articulo en 15 segundos...
Inicio  /  Applied Sciences  /  Vol: 9 Par: 12 (2019)  /  Artículo
ARTÍCULO
TITULO

Data Driven Leakage Detection and Classification of a Boiler Tube

Muhammad Sohaib and Jong-Myon Kim    

Resumen

Boiler heat exchange in thermal power plants involves tubes to transfer heat from the fuel to the water. Boiler tube leakage can cause outages and huge power generation loss. Therefore, early detection of leaks in boiler tubes is necessary to avoid such accidents. In this study, a boiler tube leak detection and classification mechanism was designed using wavelet packet transform (WPT) analysis of the acoustic emission (AE) signals acquired from the boiler tube and a fully connected deep neural network (FC-DNN). WPT analysis of the AE signals enabled the extraction of features associated with the different conditions of the boiler tube, that is, normal and leak conditions. The deep neural network (DNN) effectively explores the salient information from the wavelet packet features through a deep architecture instead of considering shallow networks, such as k-nearest neighbors (k-NN) and support vector machines (SVM). This enhances the classification performance of the leak identification and classification model developed. The proposed model yielded a 99.2 % average classification accuracy when tested with AE signals from the boiler tube. The experimental results prove the efficacy of the proposed model for boiler tube leak detection and classification.

 Artículos similares

       
 
Deepanjal Shrestha, Tan Wenan, Deepmala Shrestha, Neesha Rajkarnikar and Seung-Ryul Jeong    
This study introduces a data-driven and machine-learning approach to design a personalized tourist recommendation system for Nepal. It examines key tourist attributes, such as demographics, behaviors, preferences, and satisfaction, to develop four sub-mo... ver más
Revista: Computation

 
Alexey Liogky and Victoria Salamatova    
Data-driven simulations are gaining popularity in mechanics of biomaterials since they do not require explicit form of constitutive relations. Data-driven modeling based on neural networks lacks interpretability. In this study, we propose an interpretabl... ver más
Revista: Computation

 
Juan Ma, Qiang Yang, Mingzhi Zhang, Yao Chen, Wenyi Zhao, Chengyu Ouyang and Dongping Ming    
Accurately predicting landslide deformation based on monitoring data is key to successful early warning of landslide disasters. Landslide displacement?time curves offer an intuitive reflection of the landslide motion process and deformation predictions o... ver más
Revista: Water

 
Haibo Chu, Zhuoqi Wang and Chong Nie    
Accurate and reliable monthly streamflow prediction plays a crucial role in the scientific allocation and efficient utilization of water resources. In this paper, we proposed a prediction framework that integrates the input variable selection method and ... ver más
Revista: Water

 
Haoyu Lin, Pengkun Quan, Zhuo Liang, Dongbo Wei and Shichun Di    
In the context of automatic charging for electric vehicles, collision localization for the end-effector of robots not only serves as a crucial visual complement but also provides essential foundations for subsequent response design. In this scenario, dat... ver más
Revista: Applied Sciences