Resumen
The recent increase in energy consumption worldwide has accelerated global warming. Thus, developed countries are aiming to reduce energy consumption in cities and promote eco-friendly policies. Buildings account for most of the energy used in a city. Therefore, it is necessary to identify the factors that affect electrical energy consumption in urban buildings. In this study, we use multiscale geographically weighted regression (MGWR) to analyze these urban characteristic factors at the global and local scales in Seoul, Korea. It is found that population and household characteristics, outdoor temperature, green and water areas, building area according to building usage, and construction age significantly affect the electrical energy consumption of buildings. In addition, the influences of these variables change with the region. Variables with different coefficients by region are winter temperature, green and water area, and households with three or more persons. The results confirm that even within a city, the influence of the aforementioned factors varies in terms of spatial distribution and patterns. This study is significant as it carried out basic research for energy consumption reduction in buildings by deriving related influencing factors.