Redirigiendo al acceso original de articulo en 18 segundos...
Inicio  /  Applied Sciences  /  Vol: 11 Par: 4 (2021)  /  Artículo
ARTÍCULO
TITULO

A Study of Adversarial Attacks and Detection on Deep Learning-Based Plant Disease Identification

Zhirui Luo    
Qingqing Li and Jun Zheng    

Resumen

Transfer learning using pre-trained deep neural networks (DNNs) has been widely used for plant disease identification recently. However, pre-trained DNNs are susceptible to adversarial attacks which generate adversarial samples causing DNN models to make wrong predictions. Successful adversarial attacks on deep learning (DL)-based plant disease identification systems could result in a significant delay of treatments and huge economic losses. This paper is the first attempt to study adversarial attacks and detection on DL-based plant disease identification. Our results show that adversarial attacks with a small number of perturbations can dramatically degrade the performance of DNN models for plant disease identification. We also find that adversarial attacks can be effectively defended by using adversarial sample detection with an appropriate choice of features. Our work will serve as a basis for developing more robust DNN models for plant disease identification and guiding the defense against adversarial attacks.

 Artículos similares

       
 
Woonghee Lee and Younghoon Kim    
This study introduces a deep-learning-based framework for detecting adversarial attacks in CT image segmentation within medical imaging. The proposed methodology includes analyzing features from various layers, particularly focusing on the first layer, a... ver más
Revista: Applied Sciences

 
Hexin Lu, Xiaodong Zhu, Jingwei Cui and Haifeng Jiang    
The process of iris recognition can result in a decline in recognition performance when the resolution of the iris images is insufficient. In this study, a super-resolution model for iris images, namely SwinGIris, which combines the Swin Transformer and ... ver más
Revista: Algorithms

 
Wenhao Sun, Yidong Zou, Yunhe Wang, Boyi Xiao, Haichuan Zhang and Zhihuai Xiao    
In the practical production environment, the complexity and variability of hydroelectric units often result in a need for more fault data, leading to inadequate accuracy in fault identification for data-driven intelligent diagnostic models. To address th... ver más
Revista: Water

 
Woonghee Lee, Mingeon Ju, Yura Sim, Young Kul Jung, Tae Hyung Kim and Younghoon Kim    
Deep learning-based segmentation models have made a profound impact on medical procedures, with U-Net based computed tomography (CT) segmentation models exhibiting remarkable performance. Yet, even with these advances, these models are found to be vulner... ver más
Revista: Applied Sciences

 
Sharoug Alzaidy and Hamad Binsalleeh    
In the field of behavioral detection, deep learning has been extensively utilized. For example, deep learning models have been utilized to detect and classify malware. Deep learning, however, has vulnerabilities that can be exploited with crafted inputs,... ver más
Revista: Applied Sciences