Resumen
Solar energy has attracted the attention of researchers around the world due to its advantages. However, photovoltaic (PV) panels still have not attained the desired efficiency and economic mature. PV tracking techniques can play a vital role in improving the performance of the PV system. The aim of this paper is to evaluate and compare the technical and economic performance of grid-connected hybrid energy systems including PV and fuel cells (FC) by applying major types of PV tracking technique. The topology and design principles and technical description of hybrid system components are proposed in this paper. Moreover, this paper also introduces economic criteria, which are used to evaluate the economy of different PV tracking techniques and seek the optimal configuration of system components. In the case study, the results show that the vertical single axis tracker was ranked 1st in terms of highest PV generation, penetration of renewable energy to the grid, lowest CO2 emission, highest energy sold to the grid and lowest purchased, and lowest net present cost (NPC) and levelized cost of energy (LCOE). The study found that the optimal design of a grid-connected hybrid energy system (PV-FC) was by using a vertical single axis tracker which has the lowest NPC, LCOE.