Redirigiendo al acceso original de articulo en 22 segundos...
ARTÍCULO
TITULO

Experimental Study on Silty Seabed Liquefaction and Its Impact on Sediment Resuspension by Random Waves

Jiangfeng Dong    
Jishang Xu    
Guangxue Li    
Anlong Li    
Shaotong Zhang    
Jianwei Niu    
Xingyu Xu and Lindong Wu    

Resumen

Seabed liquefaction and sediment resuspension under wave loading are key issues in marine engineering, but are usually regarded as independent processes (instead of coexisting and interacting processes). Here, we analyzed random wave-induced seabed liquefaction and its impact on sediment resuspension using flume experiments. Results show that in a nonliquefaction scenario, excess pore pressure in the seabed oscillates with wave fluctuations, but pressure accumulation is low, while a consistent upward pressure gradient promotes sediment suspension. Wave-induced shear stress was the key driver of sediment resuspension in a nonliquefaction scenario. In the liquefied state, waves with different amplitudes differently responded to excess pore pressure; small-amplitude waves accumulated pressure, while large-amplitude waves dissipated it. Liquefied soil formed mud waves, creating elliptical motion along with random waves. Seabed liquefaction accelerated sediment resuspension in the following ways: reducing soil critical shear stress; forming seepage channels inside the seabed; forming mud waves, resulting in increased turbulent kinetic energy; dissipating excess pore pressure and releasing porewater, expelling fine-grained sediment from the liquefied soil. Our study reveals the variation in excess pore pressure in silty seabed under random waves and its effect on sediment resuspension, which is significant for understanding soil liquefaction and sediment movement of silt.

 Artículos similares

       
 
Zhike Zou, Longcang Shu, Xing Min and Esther Chifuniro Mabedi    
The artificial recharge of stormwater is an effective approach for replenishing aquifer and reduce urban waterlogging, but prone to clogging by suspended particles (SP) that are highly heterogeneously sized. In this paper, the transport and deposition of... ver más
Revista: Water

 
Zuhier Alakayleh, Xing Fang and T. Prabhakar Clement    
This study aims at furthering our understanding of the Modified Philip?Dunne Infiltrometer (MPDI), which is used to determine the saturated hydraulic conductivity Ks and the Green?Ampt suction head ? at the wetting front. We have developed a forward-mode... ver más
Revista: Water

 
Ewa Stanczyk-Mazanek, Longina Stepniak and Urszula Kepa    
In this paper, we discuss the effect sewage sludge (SS) application has on the contamination of polycyclic aromatic hydrocarbons in fertilized soils and groundwater. Morver, the contents of these compounds in plant biomass was analyzed. For six months, c... ver más
Revista: Water

 
Xiaoni Yang, Juanjuan Ma, Yongye Li, Xihuan Sun, Xiaomeng Jia and Yonggang Li    
Hydraulic transportation of the piped carriage is a new energy-saving and environmentally-friendly transportation mode. There are two main states in the conveying process, stationary and moving. In the process of hydraulic transportation of the piped car... ver más
Revista: Water

 
Taufiq Saidi,Taufiq Saidi,Muttaqin Hasan,Muttaqin Hasan,Zahra Amalia,Muhammad Iqbal,Muhammad Iqbal     Pág. 155 - 164
The use of synthetic Fiber Reinforced Polymer (FRP) as a composite material is an alternative material that has been widely used for strengthening and repairing reinforced concrete structures. However, the high price is one of the obstacles in applying s... ver más