Redirigiendo al acceso original de articulo en 16 segundos...
Inicio  /  Applied Sciences  /  Vol: 10 Par: 24 (2020)  /  Artículo
ARTÍCULO
TITULO

The Problem of Accounting for Heat Exchange between the Flow and the Flow Part Surfaces When Modeling a Viscous Flow in Low-Flow Stages of a Centrifugal Compressor

Sergey Kartashov    
Yuri Kozhukhov    
Vycheslav Ivanov    
Aleksei Danilishin    
Aleksey Yablokov    
Aleksey Aksenov    
Ivan Yanin and Minh Hai Nguyen    

Resumen

In this paper, we review the problem of accounting for heat exchange between the flow and the flow part surfaces when creating a calculation model for modeling the workflow process of low-flow stages of a centrifugal compressor using computational fluid dynamics (CFD). The objective selected for this study was a low-flow intermediate type stage with the conditional flow coefficient ? = 0.008 and the relative width at the impeller exit b2/D2 = 0.0133. We show that, in the case of modeling with widespread adiabatic wall simplification, the calculated temperature in the gaps between the impeller and the stator elements is significantly overestimated. Modeling of the working process in the flow part was carried out with a coupled heat exchanger, as well as with simplified accounting for heat transfer by setting the temperatures of the walls. The gas-dynamic characteristics of the stage were compared with the experimental data, the heat transfer influence on the disks friction coefficient was estimated, and the temperature distributions in the gaps between disks and in the flow part of the stage were analyzed. It is shown that the main principle when modeling the flow in low-flow stage is to ensure correct temperature distribution in the gaps.

 Artículos similares

       
 
Konstantin Shishmarev, Tatyana Sibiryakova, Kristina Naydenova and Tatyana Khabakhpasheva    
The problem of periodic oscillations of a dipole, specifically its strength, along the principal axes in a three-dimensional frozen channel is considered. The key points of the problem are taking into account the linear thickness of ice across the channe... ver más

 
Julien Touboul, Veronica Morales-Marquez and Kostas Belibassakis    
The wave?current?seabed interaction problem is studied by using a coupled-mode system developed for modeling wave scattering by non-homogeneous, sheared currents in variable bathymetry regions. The model is based on a modal series expansion of wave veloc... ver más

 
Fuyin Cui, Shuling Chen, Hongbin Hao, Changzhi Han, Ruidong Ni and Yueyue Zhuo    
To address the unstable motion of a tension leg platform (TLP) for floating wind turbines in various sea conditions, an improved method of incorporating a tuned liquid multi-column damper (TLMCD) into the TLP foundation is proposed. In order to evaluate ... ver más

 
Bingbing Wan, Yuyun Shi and Zhifu Li    
The interaction problem of waves with a body floating near the marginal ice zone is studied, where the marginal ice zone is modeled as an array of multiple uniformly sized floating ice sheets. The linear velocity potential theory is applied for fluid flo... ver más

 
Boqian Ji, Jun Huang, Xiaoqiang Lu, Yacong Wu and Jingjiang Liu    
The wing aerodynamic shape optimization is a typical high-dimensional problem with numerous independent design variables. Researching methods to reduce the dimensionality of optimization from the perspective of aerodynamic characteristics is necessary. O... ver más
Revista: Aerospace