Resumen
Laser-based plastic?metal joints have high potential to enable cost-efficient lightweight structures in multi-material design. By an appropriate load-optimized positioning of the microstructure on the joining zone, cost- and strength-optimized joints can be realized. However, there are no design methods and models to efficiently develop these tailored microstructures. Currently, time-consuming experiments are necessary to find the optimum microstructure concepts. These experiments must be repeated when requirements change, e.g., dimensions of the components. To provide a simple and efficient design tool, this paper presents an automated numerical method for the development of cost- and strength-optimized microstructure concepts for laser-based joining zones. The basis for the approach is a new numerical model which generates concepts for microstructures automatically based only on the stress tensor in the joining zone. A new finite element cohesive zone model (CZM) was developed to estimate the joint strength. The CZM parameters were efficiently derived from a finite element model of a single cavity. To determine the costs, a new model is presented that calculates the production time and the cost for any given microstructure. The models were interconnected in a combined optimization procedure and a genetic algorithm was used to determine cost- and strength-optimized microstructure concepts. The approach was applied to a demonstration example where the laser costs were reduced by up to 67% compared with benchmarks with surface-covering parallel linear cavities. The approach shows high potential for the efficient design of cost- and strength-optimal laser-based hybrid joints since it is fully based on simulation models and iterative experiments in the design stage are eliminated.