Redirigiendo al acceso original de articulo en 19 segundos...
ARTÍCULO
TITULO

Research on the Deep Learning Technology in the Hull Form Optimization Problem

Shenglong Zhang    

Resumen

A high-accuracy objective function evaluation method is crucial in ship hull form optimization. This study proposes a novel approximate ship hull form optimization framework using the deep learning technology, deep belief network algorithm. To illustrate the advantages of using the deep belief network algorithm in the prediction of total resistance, two traditional surrogate models (ELMAN and RBF neural networks) are also employed in this study to predict total resistance for different modified ship models. It can be seen from the results that the deep belief network algorithm is more suitable for forecasting total resistance of a DTMB5512 ship model than the traditional surrogate models. Following this, two design variables are selected to alter the bow geometry of the DTMB5512 ship model. The total resistance for different modified ship hulls is estimated using the deep belief network algorithm. Furthermore, an optimal solution with minimum total resistance in a two-dimensional space is obtained using the particle swarm optimization algorithm. The optimization results indicate that the optimization framework using the deep belief network algorithm can obtain an optimal solution with the smallest total resistance for different ship speeds.

 Artículos similares

       
 
George Westergaard, Utku Erden, Omar Abdallah Mateo, Sullaiman Musah Lampo, Tahir Cetin Akinci and Oguzhan Topsakal    
Automated Machine Learning (AutoML) tools are revolutionizing the field of machine learning by significantly reducing the need for deep computer science expertise. Designed to make ML more accessible, they enable users to build high-performing models wit... ver más
Revista: Information

 
Malinka Ivanova, Gabriela Grosseck and Carmen Holotescu    
The penetration of intelligent applications in education is rapidly increasing, posing a number of questions of a different nature to the educational community. This paper is coming to analyze and outline the influence of artificial intelligence (AI) on ... ver más
Revista: Informatics

 
Norah Fahd Alhussainan, Belgacem Ben Youssef and Mohamed Maher Ben Ismail    
Brain tumor diagnosis traditionally relies on the manual examination of magnetic resonance images (MRIs), a process that is prone to human error and is also time consuming. Recent advancements leverage machine learning models to categorize tumors, such a... ver más
Revista: Computation

 
Huang Feng and Yu Zhang    
Extensive research in predicting annual passenger throughput has been conducted, aiming at providing decision support for airport construction, aircraft procurement, resource management, flight scheduling, etc. However, how airport operational throughput... ver más
Revista: Aerospace

 
Elham Albaroudi, Taha Mansouri and Ali Alameer    
The study comprehensively reviews artificial intelligence (AI) techniques for addressing algorithmic bias in job hiring. More businesses are using AI in curriculum vitae (CV) screening. While the move improves efficiency in the recruitment process, it is... ver más
Revista: AI