Redirigiendo al acceso original de articulo en 18 segundos...
Inicio  /  Geosciences  /  Vol: 9 Par: 5 (2019)  /  Artículo
ARTÍCULO
TITULO

U?Pb Geochronology of Hydrothermal Monazite from Uraniferous Greisen Veins Associated with the High Heat Production Mount Douglas Granite, New Brunswick, Canada

Nadia Mohammadi    
Christopher R. M. McFarlane and David R. Lentz    

Resumen

A combination of in situ laser ablation inductively coupled plasma?mass spectrometry (LA ICP?MS) analyses guided by Scanning Electron Microscope?Back-Scattered Electron imaging (SEM?BSE) was applied to hydrothermal monazite from greisen veins of the Late Devonian, highly evolved, uraniferous Mount Douglas Granite, New Brunswick, Canada. Understanding the uraniferous nature of the suite and characterizing the hydrothermal system that produced the associated mineralized greisen veins were the main goals of this study. The uraniferous nature of the Mount Douglas Granite is evident from previous airborne radiometric surveys, whole-rock geochemical data indicating high U and Th (2?22 ppm U; 19?71 ppm Th), the presence of monazite, zircon, xenotime, thorite, bastnaesite, and uraninite within the pluton and the associated hydrothermal greisen veins, as well as anomalous levels of U and Th in wolframite, hematite, and martite within greisen veins. New U?Pb geochronology of hydrothermal monazite coexisting with sulfide and oxide minerals yielded mineralization ages ranging from 344 to 368 Ma, with most of them (90%) younger than the crystallization age of the pluton (368 ± 3 Ma). The younger mineralization age indicates post-magmatic hydrothermal activities within the Mount Douglas system that was responsible for the mineralization. The production of uraniferous greisen veins by this process is probably associated with the High Heat Production (HHP) nature of this pluton, resulting from the radioactive decay of U, Th, and K. This heat prolongs post-crystallization hydrothermal fluid circulation and promotes the generation of hydrothermal ore deposits that are younger than the pluton. Assuming a density of 2.61 g/cm3, the average weighted mean radiogenic heat production of the Mount Douglas granites is 5.9 µW/m3 (14.1 HGU; Heat Generation Unit), in which it ranges from 2.2 µW/m3 in the least evolved unit, Dmd1, up to 10.1 µW/m3 in the most fractionated unit, Dmd3. They are all significantly higher than the average upper continental crust (1.65 µW/m3). The high radiogenic heat production of the Mount Douglas Granite, accompanied by a high estimated heat flow of 70 mW/m2, supports the assignment of the granite to a ?hot crust? (>7 HGU) HHP granite and highlights its potential for geothermal energy exploration.

 Artículos similares

       
 
Nikolai Berdnikov, Pavel Kepezhinskas, Natalia Konovalova and Nikita Kepezhinskas    
Gold is typically transported by mafic and evolved magmas into the upper crust to be deposited in shallow oxidized porphyry and epithermal environments. However, the magmatic behavior of gold is still poorly understood and warrants further attention. Add... ver más
Revista: Geosciences

 
Lucie Mathieu, Taylor D. Wasuita, Ross Sherlock, Fred Speidel, Jeffrey H. Marsh, Benoît Dubé and Olivier Côté-Mantha    
Zircon provides essential information on the age and oxidation state of magmatic systems and can be used to characterize magmatic-hydrothermal Au mineralizing systems. Using the Douay intrusion-related gold system (IRGS) as a type example of Neoarchean s... ver más
Revista: Geosciences

 
Inna Morgunova, Petr Semenov, Anna Kursheva, Ivan Litvinenko, Sergey Malyshev, Sergey Bukin, Oleg Khlystov, Olga Pavlova, Tamara Zemskaya and Alexey A. Krylov    
This paper performs a detailed study of a wide set of organic-geochemical proxies in 15 sediment cores collected from the main basins of Lake Baikal (the northern, the central and the southern) where processes of focused fluid discharge were detected. A ... ver más
Revista: Geosciences

 
Saeed Mahmoodpour, Mrityunjay Singh, Christian Obaje, Sri Kalyan Tangirala, John Reinecker, Kristian Bär and Ingo Sass    
The United Downs Deep Geothermal Project (UDDGP) is designed to utilize a presumably permeable steep dipping fault damage zone (constituting the hydrothermal reservoir in a very low permeability granitic host rock) for fluid circulation and heat extracti... ver más
Revista: Geosciences

 
Joschka Röth and Ralf Littke    
The Cooper subregion within the central Eromanga Basin is the Swiss army knife among Australia?s sedimentary basins. In addition to important oil and gas resources, it hosts abundant coal bed methane, important groundwater resources, features suitable co... ver más
Revista: Geosciences