Resumen
Microalgal biomass has gained increasing attention in the last decade for various biotechnological applications, including human nutrition. Certified organic products are currently a growing niche market in which the food industry has shown great interest. In this context, this work aimed at developing a certified organic culture medium for the production of autotrophic Chlorella vulgaris biomass. A preliminary assay in 2 L bubble column photobioreactors was performed in order to screen different commercial organic substrates (OS) at a normalized concentration of N (2 mmol L-1). The highest growth performance was obtained using EcoMix4 and Bioscape which showed similar biomass concentrations compared to the synthetic culture medium (control). In order to meet the nutrient needs of Chlorella, both OS underwent elemental analyses to assess their nutrient composition. The laboratory findings allowed the development of a final organic culture medium using a proportion of Bioscape/EcoMix4 (1:1.2, m/m). This organic culture medium was later validated outdoors in 125 L flat panel and 10 m3 tubular flow through photobioreactors. The results obtained revealed that the developed organic medium led to similar microalgal growth performance and biochemical composition of produced biomass, as compared to the traditional synthetic medium. Overall, the formulated organic medium was effective for the autotrophic production of organic C. vulgaris biomass.