Redirigiendo al acceso original de articulo en 15 segundos...
Inicio  /  Applied Sciences  /  Vol: 10 Par: 2 (2020)  /  Artículo
ARTÍCULO
TITULO

Impact Damage Resistance and Post-Impact Tolerance of Optimum Banana-Pseudo-Stem-Fiber-Reinforced Epoxy Sandwich Structures

Mohamad Zaki Hassan    
S. M. Sapuan    
Zainudin A. Rasid    
Ariff Farhan Mohd Nor    
Rozzeta Dolah and Mohd Yusof Md Daud    

Resumen

Banana fiber has a high potential for use in fiber composite structures due to its promise as a polymer reinforcement. However, it has poor bonding characteristics with the matrixes due to hydrophobic?hydrophilic incompatibility, inconsistency in blending weight ratio, and fiber length instability. In this study, the optimal conditions for a banana/epoxy composite as determined previously were used to fabricate a sandwich structure where carbon/Kevlar twill plies acted as the skins. The structure was evaluated based on two experimental tests: low-velocity impact and compression after impact (CAI) tests. Here, the synthetic fiber including Kevlar, carbon, and glass sandwich structures were also tested for comparison purposes. In general, the results showed a low peak load and larger damage area in the optimal banana/epoxy structures. The impact damage area, as characterized by the dye penetration, increased with increasing impact energy. The optimal banana composite and synthetic fiber systems were proven to offer a similar residual strength and normalized strength when higher impact energies were applied. Delamination and fracture behavior were dominant in the optimal banana structures subjected to CAI testing. Finally, optimization of the compounding parameters of the optimal banana fibers improved the impact and CAI properties of the structure, making them comparable to those of synthetic sandwich composites.

 Artículos similares

       
 
Tao Wang, Yu Xiang, Liyuan Liu and Wang Xiong    
Relying on the Mawan undersea large-diameter, dual-line, mud?water-balanced shield tunnel project and focusing on the characteristics of the tunnel, such as the complex geological conditions at the expected intersection location and the existence of a su... ver más

 
Bin Jia, Qing Wang, Lei Ju, Chenjun Hu, Rongsheng Zhao, Duanfeng Han and Fuzhen Pang    
The vertical ice breaking of marine structures in ice-covered areas involves the deformation and failure of an ice sheet. Different from the existing conventional scenarios where the ice sheet is used as a transportation and support medium, the damage to... ver más

 
Yangqing Xu, Yuxiang Zhao, Qiangqiang Jiang, Jie Sun, Chengxin Tian and Wei Jiang    
During the construction of deep foundation pits in subways, it is crucial to closely monitor the horizontal displacement of the pit enclosure to ensure stability and safety, and to reduce the risk of structural damage caused by pit deformations. With adv... ver más
Revista: Applied Sciences

 
Sadiq Gbagba, Lorenzo Maccioni and Franco Concli    
In the shipbuilding, construction, automotive, and aerospace industries, welding is still a crucial manufacturing process because it can be utilized to create massive, intricate structures with exact dimensional specifications. These kinds of structures ... ver más
Revista: Applied Sciences

 
Liang Dai, Chaojun Jia, Lei Chen, Qiang Zhang and Wei Chen    
The intricate geological conditions of reservoir banks render them highly susceptible to destabilization and damage from fluctuations in water levels. The study area, the Cheyipin section of the Huangdeng Hydroelectric Station, is characterized by numero... ver más
Revista: Applied Sciences