Redirigiendo al acceso original de articulo en 22 segundos...
ARTÍCULO
TITULO

Machine Learning Based Sensitivity Analysis of Aeroelastic Stability Parameters in a Compressor Cascade

Marco Rauseo    
Mehdi Vahdati and Fanzhou Zhao    

Resumen

Aeroelastic instabilities such as flutter have a crucial role in limiting the operating range and reliability of turbomachinery. This paper offers an alternative approach to aeroelastic analysis, where the sensitivity of aerodynamic damping with respect to main flow and structural parameters is quantified through a surrogate-model-based investigation. The parameters are chosen based on previous studies and are represented by a uniform distribution within applicable intervals. The surrogate model is an artificial neural network, trained and tested to achieve an error within 1% of the test data. The quantity of interest is aerodynamic damping and the datasets are obtained from a linearised aeroelastic solver. The sensitivity of aerodynamic damping with respect to the input variables is obtained by calculating normalised gradients from the surrogate model at specific operating conditions. The results show a quantitative comparison of sensitivity across the different input parameters. The outcome of the sensitivity analysis is then used to decide the most appropriate action to take in order to induce stability in unstable operating conditions. The work is a preliminary study, carried out on a simplified two dimensional compressor cascade and it is aimed at proving the validity of a data-driven approach in studying the aeroelastic behaviour of turbomachinery. To the best of the authors? knowledge, this is the first time a data-driven flutter model has been investigated. The initial results are encouraging, indicating that this approach is worth pursuing in the future. The presented framework can be used as a redesign tool to enhance the flutter stability of an existing blade.

 Artículos similares

       
 
Zhenzhen Di, Miao Chang, Peikun Guo, Yang Li and Yin Chang    
Most worldwide industrial wastewater, including in China, is still directly discharged to aquatic environments without adequate treatment. Because of a lack of data and few methods, the relationships between pollutants discharged in wastewater and those ... ver más
Revista: Water

 
Ognjen Radovic,Srdan Marinkovic,Jelena Radojicic    
Credit scoring attracts special attention of financial institutions. In recent years, deep learning methods have been particularly interesting. In this paper, we compare the performance of ensemble deep learning methods based on decision trees with the b... ver más

 
Pablo de Llano, Carlos Piñeiro, Manuel Rodríguez     Pág. pp. 163 - 198
This paper offers a comparative analysis of the effectiveness of eight popular forecasting methods: univariate, linear, discriminate and logit regression; recursive partitioning, rough sets, artificial neural networks, and DEA. Our goals are: clarify the... ver más

 
Hugo López-Fernández     Pág. 22 - 25
Mass spectrometry using matrix assisted laser desorption ionization coupled to time of flight analyzers (MALDI-TOF MS) has become popular during the last decade due to its high speed, sensitivity and robustness for detecting proteins and peptides. This a... ver más

 
Rejath Jose, Faiz Syed, Anvin Thomas and Milan Toma    
The advancement of machine learning in healthcare offers significant potential for enhancing disease prediction and management. This study harnesses the PyCaret library?a Python-based machine learning toolkit?to construct and refine predictive models for... ver más
Revista: Applied Sciences