Resumen
The geothermal energy of groundwater has aroused increasing interest as a solution to climate change. The groundwater heat pumps (GWHP) system using groundwater is the most environmentally friendly system to date and has been examined in several studies. However, biological clogging by microorganisms negatively affects the thermal efficiency of the GWHP system. In this study, we employed air surging, the most popular among well management methods, and pyrosequencing to analyze the genetic diversity in bacteria before and after air surging in a geothermal well. Furthermore, the diversity of dominant bacterial genera and those related to clogging were evaluated. The bacterial diversity of the groundwater well increased after air surging. Nevertheless, the proportion of bacterial genera thought to be related to microbiological clogging decreased. In cooling and heating systems based on the geothermal energy of groundwater, the wells should be maintained regularly by air surging to reduce efficiency problems caused by microbiological clogging and to prevent secondary damage to human health, e.g., pneumonia due to human pathogenic bacteria including Pseudomonas aeruginosa and Acinetobacter.