Redirigiendo al acceso original de articulo en 18 segundos...
ARTÍCULO
TITULO

Cross-Domain Contrastive Learning-Based Few-Shot Underwater Acoustic Target Recognition

Xiaodong Cui    
Zhuofan He    
Yangtao Xue    
Keke Tang    
Peican Zhu and Jing Han    

Resumen

Underwater Acoustic Target Recognition (UATR) plays a crucial role in underwater detection devices. However, due to the difficulty and high cost of collecting data in the underwater environment, UATR still faces the problem of small datasets. Few-shot learning (FSL) addresses this challenge through techniques such as Siamese networks and prototypical networks. However, it also suffers from the issue of overfitting, which leads to catastrophic forgetting and performance degradation. Current underwater FSL methods primarily focus on mining similar information within sample pairs, ignoring the unique features of ship radiation noise. This study proposes a novel cross-domain contrastive learning-based few-shot (CDCF) method for UATR to alleviate overfitting issues. This approach leverages self-supervised training on both source and target domains to facilitate rapid adaptation to the target domain. Additionally, a base contrastive module is introduced. Positive and negative sample pairs are generated through data augmentation, and the similarity in the corresponding frequency bands of feature embedding is utilized to learn fine-grained features of ship radiation noise, thereby expanding the scope of knowledge in the source domain. We evaluate the performance of CDCF in diverse scenarios on ShipsEar and DeepShip datasets. The experimental results indicate that in cross-domain environments, the model achieves accuracy rates of 56.71%, 73.02%, and 76.93% for 1-shot, 3-shot, and 5-shot scenarios, respectively, outperforming other FSL methods. Moreover, the model demonstrates outstanding performance in noisy environments.

 Artículos similares

       
 
Changhong Liu, Jiawen Wen, Jinshan Huang, Weiren Lin, Bochun Wu, Ning Xie and Tao Zou    
Underwater object detection is crucial in marine exploration, presenting a challenging problem in computer vision due to factors like light attenuation, scattering, and background interference. Existing underwater object detection models face challenges ... ver más

 
Liushuai Cao, Yanyan Pan, Gang Gao, Linjie Li and Decheng Wan    
Wakes produced by underwater vehicles, particularly submarines, in density-stratified fluids play a pivotal role across military, academic, and engineering domains. In comparison to homogeneous fluid environments, wakes in stratified flows exhibit distin... ver más

 
Chenhong Yan, Shefeng Yan, Tianyi Yao, Yang Yu, Guang Pan, Lu Liu, Mou Wang and Jisheng Bai    
Ship-radiated noise classification is critical in ocean acoustics. Recently, the feature extraction method combined with time?frequency spectrograms and convolutional neural networks (CNNs) has effectively described the differences between various underw... ver más

 
Sai Wang, Guoping Fu, Yongduo Song, Jing Wen, Tuanqi Guo, Hongjin Zhang and Tuantuan Wang    
The development of intelligent oceans requires exploration and an understanding of the various characteristics of the oceans. The emerging Internet of Underwater Things (IoUT) is an extension of the Internet of Things (IoT) to underwater environments, an... ver más

 
Rong Wang, Yonghui Zhang and Yulu Zhang    
The absorption and scattering of light in water usually result in the degradation of underwater image quality, such as color distortion and low contrast. Additionally, the performance of acquisition devices may limit the spatial resolution of underwater ... ver más