Redirigiendo al acceso original de articulo en 19 segundos...
Inicio  /  Algorithms  /  Vol: 11 Par: 9 (2018)  /  Artículo
ARTÍCULO
TITULO

Multi-Level Elasticity for Wide-Area Data Streaming Systems: A Reinforcement Learning Approach

Gabriele Russo Russo    
Matteo Nardelli    
Valeria Cardellini and Francesco Lo Presti    

Resumen

The capability of efficiently processing the data streams emitted by nowadays ubiquitous sensing devices enables the development of new intelligent services. Data Stream Processing (DSP) applications allow for processing huge volumes of data in near real-time. To keep up with the high volume and velocity of data, these applications can elastically scale their execution on multiple computing resources to process the incoming data flow in parallel. Being that data sources and consumers are usually located at the network edges, nowadays the presence of geo-distributed computing resources represents an attractive environment for DSP. However, controlling the applications and the processing infrastructure in such wide-area environments represents a significant challenge. In this paper, we present a hierarchical solution for the autonomous control of elastic DSP applications and infrastructures. It consists of a two-layered hierarchical solution, where centralized components coordinate subordinated distributed managers, which, in turn, locally control the elastic adaptation of the application components and deployment regions. Exploiting this framework, we design several self-adaptation policies, including reinforcement learning based solutions. We show the benefits of the presented self-adaptation policies with respect to static provisioning solutions, and discuss the strengths of reinforcement learning based approaches, which learn from experience how to optimize the application performance and resource allocation.

 Artículos similares

       
 
Mohamed Shenify, Fokrul Alom Mazarbhuiya and A. S. Wungreiphi    
There are many applications of anomaly detection in the Internet of Things domain. IoT technology consists of a large number of interconnecting digital devices not only generating huge data continuously but also making real-time computations. Since IoT d... ver más
Revista: Applied Sciences

 
Thanda Shwe and Masayoshi Aritsugi    
Intelligent applications in several areas increasingly rely on big data solutions to improve their efficiency, but the processing and management of big data incur high costs. Although cloud-computing-based big data management and processing offer a promi... ver más
Revista: Applied Sciences

 
Jinjia Zhou and Jian Yang    
Compressive Sensing (CS) has emerged as a transformative technique in image compression, offering innovative solutions to challenges in efficient signal representation and acquisition. This paper provides a comprehensive exploration of the key components... ver más
Revista: Information

 
Carlos Serôdio, Pedro Mestre, Jorge Cabral, Monica Gomes and Frederico Branco    
In the context of Industry 4.0, this paper explores the vital role of advanced technologies, including Cyber?Physical Systems (CPS), Big Data, Internet of Things (IoT), digital twins, and Artificial Intelligence (AI), in enhancing data valorization and m... ver más
Revista: Applied Sciences

 
Atefe Sedaghat, Homayoon Arbabkhah, Masood Jafari Kang and Maryam Hamidi    
This research introduces an online system for monitoring maritime traffic, aimed at tracking vessels in water routes and predicting their subsequent locations in real time. The proposed framework utilizes an Extract, Transform, and Load (ETL) pipeline to... ver más