Redirigiendo al acceso original de articulo en 20 segundos...
ARTÍCULO
TITULO

Storm Surge Forecasting along Korea Strait Using Artificial Neural Network

Youngmin Park    
Euihyun Kim    
Youngjin Choi    
Gwangho Seo    
Youngtaeg Kim and Hokyun Kim    

Resumen

Typhoon attacks on the Korean Peninsula have recently become more frequent, and the strength of these typhoons is also gradually increasing because of climate change. Typhoon attacks cause storm surges in coastal regions; therefore, forecasts that enable advanced preparation for these storm surges are important. Because storm surge forecasts require both accuracy and speed, this study uses an artificial neural network algorithm suitable for nonlinear modeling and rapid computation. A storm surge forecast model was created for five tidal stations on the Korea Strait (southern coast of the Korean Peninsula), and the accuracy of its forecasts was verified. The model consisted of a deep neural network and convolutional neural network that represent the two-dimensional spatial characteristics. Data from the Global Forecast System numerical weather model were used as input to represent the spatial characteristics. The verification of the forecast accuracy revealed an absolute relative error of =5% for the five tidal stations. Therefore, it appears that the proposed method can be used for forecasts for other locations in the Korea Strait. Furthermore, because accurate forecasts can be computed quickly, the method is expected to provide rapid information for use in the field to support advance preparation for storm surges.