Redirigiendo al acceso original de articulo en 17 segundos...
Inicio  /  Applied Sciences  /  Vol: 13 Par: 14 (2023)  /  Artículo
ARTÍCULO
TITULO

A Data Feature Extraction Method Based on the NOTEARS Causal Inference Algorithm

Hairui Wang    
Junming Li and Guifu Zhu    

Resumen

Extracting effective features from high-dimensional datasets is crucial for determining the accuracy of regression and classification models. Model predictions based on causality are known for their robustness. Thus, this paper introduces causality into feature selection and utilizes Feature Selection based on NOTEARS causal discovery (FSNT) for effective feature extraction. This method transforms the structural learning algorithm into a numerical optimization problem, enabling the rapid identification of the globally optimal causality diagram between features and the target variable. To assess the effectiveness of the FSNT algorithm, this paper evaluates its performance by employing 10 regression algorithms and 8 classification algorithms for regression and classification predictions on six real datasets from diverse fields. These results are then compared with three mainstream feature selection algorithms. The results indicate a significant average decline of 54.02% in regression prediction achieved by the FSNT algorithm. Furthermore, the algorithm exhibits exceptional performance in classification prediction, leading to an enhancement in the precision value. These findings highlight the effectiveness of FSNT in eliminating redundant features and significantly improving the accuracy of model predictions.

 Artículos similares

       
 
Jiusheng Du, Chengyang Meng and Xingwang Liu    
This study utilizes taxi trajectory data to uncover urban residents? travel patterns, offering critical insights into the spatial and temporal dynamics of urban mobility. A fusion clustering algorithm is introduced, enhancing the clustering accuracy of t... ver más
Revista: Applied Sciences

 
Yugen Yi, Haoming Zhang, Ningyi Zhang, Wei Zhou, Xiaomei Huang, Gengsheng Xie and Caixia Zheng    
As the feature dimension of data continues to expand, the task of selecting an optimal subset of features from a pool of limited labeled data and extensive unlabeled data becomes more and more challenging. In recent years, some semi-supervised feature se... ver más
Revista: Information

 
Qiang Cheng, Yong Cao, Zhifeng Liu, Lingli Cui, Tao Zhang and Lei Xu    
The computer numerically controlled (CNC) system is the key functional component of CNC machine tool control systems, and the servo drive system is an important part of CNC systems. The complex working environment will lead to frequent failure of servo d... ver más
Revista: Applied Sciences

 
Songlin Tian, Ying Yang and Lei Yang    
Business intelligence (BI), as a system for business data integration, processing, and analysis, is receiving increasing attention from enterprises. Data visualization is an important feature of BI, which allows users to visually observe the distribution... ver más
Revista: Applied Sciences

 
Hao An, Ruotong Ma, Yuhan Yan, Tailai Chen, Yuchen Zhao, Pan Li, Jifeng Li, Xinyue Wang, Dongchen Fan and Chunli Lv    
This paper aims to address the increasingly severe security threats in financial systems by proposing a novel financial attack detection model, Finsformer. This model integrates the advanced Transformer architecture with the innovative cluster-attention ... ver más
Revista: Applied Sciences