Redirigiendo al acceso original de articulo en 18 segundos...
Inicio  /  Algorithms  /  Vol: 16 Par: 12 (2023)  /  Artículo
ARTÍCULO
TITULO

Deep Learning-Based Visual Complexity Analysis of Electroencephalography Time-Frequency Images: Can It Localize the Epileptogenic Zone in the Brain?

Navaneethakrishna Makaram    
Sarvagya Gupta    
Matthew Pesce    
Jeffrey Bolton    
Scellig Stone    
Daniel Haehn    
Marc Pomplun    
Christos Papadelis    
Phillip Pearl    
Alexander Rotenberg    
Patricia Ellen Grant and Eleonora Tamilia    

Resumen

In drug-resistant epilepsy, a visual inspection of intracranial electroencephalography (iEEG) signals is often needed to localize the epileptogenic zone (EZ) and guide neurosurgery. The visual assessment of iEEG time-frequency (TF) images is an alternative to signal inspection, but subtle variations may escape the human eye. Here, we propose a deep learning-based metric of visual complexity to interpret TF images extracted from iEEG data and aim to assess its ability to identify the EZ in the brain. We analyzed interictal iEEG data from 1928 contacts recorded from 20 children with drug-resistant epilepsy who became seizure-free after neurosurgery. We localized each iEEG contact in the MRI, created TF images (1?70 Hz) for each contact, and used a pre-trained VGG16 network to measure their visual complexity by extracting unsupervised activation energy (UAE) from 13 convolutional layers. We identified points of interest in the brain using the UAE values via patient- and layer-specific thresholds (based on extreme value distribution) and using a support vector machine classifier. Results show that contacts inside the seizure onset zone exhibit lower UAE than outside, with larger differences in deep layers (L10, L12, and L13: p < 0.001). Furthermore, the points of interest identified using the support vector machine, localized the EZ with 7 mm accuracy. In conclusion, we presented a pre-surgical computerized tool that facilitates the EZ localization in the patient?s MRI without requiring long-term iEEG inspection.

 Artículos similares

       
 
JongBae Kim    
This technology can prevent accidents involving large vehicles, such as trucks or buses, by selecting an optimal driving lane for safe autonomous driving. This paper proposes a method for detecting forward-driving vehicles within road images obtained fro... ver más
Revista: Applied Sciences

 
Yangqing Xu, Yuxiang Zhao, Qiangqiang Jiang, Jie Sun, Chengxin Tian and Wei Jiang    
During the construction of deep foundation pits in subways, it is crucial to closely monitor the horizontal displacement of the pit enclosure to ensure stability and safety, and to reduce the risk of structural damage caused by pit deformations. With adv... ver más
Revista: Applied Sciences

 
Mihael Gudlin, Miro Hegedic, Matija Golec and Davor Kolar    
In the quest for industrial efficiency, human performance within manufacturing systems remains pivotal. Traditional time study methods, reliant on direct observation and manual video analysis, are increasingly inadequate, given technological advancements... ver más
Revista: Applied Sciences

 
Alberto Alvarellos, Andrés Figuero, Santiago Rodríguez-Yáñez, José Sande, Enrique Peña, Paulo Rosa-Santos and Juan Rabuñal    
Port managers can use predictions of the wave overtopping predictors created in this work to take preventative measures and optimize operations, ultimately improving safety and helping to minimize the economic impact that overtopping events have on the p... ver más
Revista: Applied Sciences

 
Zahra Ameli, Shabnam Jafarpoor Nesheli and Eric N. Landis    
The application of deep learning (DL) algorithms has become of great interest in recent years due to their superior performance in structural damage identification, including the detection of corrosion. There has been growing interest in the application ... ver más
Revista: Infrastructures