Redirigiendo al acceso original de articulo en 22 segundos...
Inicio  /  Algorithms  /  Vol: 15 Par: 6 (2022)  /  Artículo
ARTÍCULO
TITULO

A Review of an Artificial Intelligence Framework for Identifying the Most Effective Palm Oil Prediction

Fatini Nadhirah Mohd Nain    
Nurul Hashimah Ahamed Hassain Malim    
Rosni Abdullah    
Muhamad Farid Abdul Rahim    
Mohd Azinuddin Ahmad Mokhtar and Nurul Syafika Mohamad Fauzi    

Resumen

Machine Learning (ML) offers new precision technologies with intelligent algorithms and robust computation. This technology benefits various agricultural industries, such as the palm oil sector, which possesses one of the most sustainable industries worldwide. Hence, an in-depth analysis was conducted, which is derived from previous research on ML utilisation in the palm oil in-dustry. The study provided a brief overview of widely used features and prediction algorithms and critically analysed current the state of ML-based palm oil prediction. This analysis is extended to the ML application in the palm oil industry and a comparison of related studies. The analysis was predicated on thoroughly examining the advantages and disadvantages of ML-based palm oil prediction and the proper identification of current and future agricultural industry challenges. Potential solutions for palm oil prediction were added to this list. Artificial intelligence and ma-chine vision were used to develop intelligent systems, revolutionising the palm oil industry. Overall, this article provided a framework for future research in the palm oil agricultural industry by highlighting the importance of ML.

 Artículos similares

       
 
Yumei Zhang, Jie Zhang, Ye Li, Dan Yao, Yue Zhao, Yi Ai, Weijun Pan and Jiang Li    
Acoustic metamaterials (AMs) composed of periodic artificial structures have extraordinary sound wave manipulation capabilities compared with traditional acoustic materials, and they have attracted widespread research attention. The sound insulation perf... ver más
Revista: Acoustics

 
Jun Du, Yaseen Laghari, Yi-Chang Wei, Linyi Wu, Ai-Ling He, Gao-Yuan Liu, Huan-Huan Yang, Zhong-Yi Guo and Shah Jahan Leghari    
Groundwater is an important natural resource in the North China Plain (NCP) with high economic benefits and social significance. It fulfills 60% of drinking and 70% of irrigation water requirements. In this review, the information is retrieved from high-... ver más
Revista: Water

 
Marwah Abdulrazzaq Naser, Aso Ahmed Majeed, Muntadher Alsabah, Taha Raad Al-Shaikhli and Kawa M. Kaky    
Cardiovascular disease is the leading cause of global mortality and responsible for millions of deaths annually. The mortality rate and overall consequences of cardiac disease can be reduced with early disease detection. However, conventional diagnostic ... ver más
Revista: Algorithms

 
Angel E. Muñoz-Zavala, Jorge E. Macías-Díaz, Daniel Alba-Cuéllar and José A. Guerrero-Díaz-de-León    
This paper reviews the application of artificial neural network (ANN) models to time series prediction tasks. We begin by briefly introducing some basic concepts and terms related to time series analysis, and by outlining some of the most popular ANN arc... ver más
Revista: Algorithms

 
Nawaf Alharbi, Mustafa Youldash, Duha Alotaibi, Haya Aldossary, Reema Albrahim, Reham Alzahrani, Wahbia Ahmed Saleh, Sunday O. Olatunji and May Issa Aldossary    
Fetal hypoxia is a condition characterized by a lack of oxygen supply in a developing fetus in the womb. It can cause potential risks, leading to abnormalities, birth defects, and even mortality. Cardiotocograph (CTG) monitoring is among the techniques t... ver más
Revista: AI