Redirigiendo al acceso original de articulo en 19 segundos...
ARTÍCULO
TITULO

Neural Network Non-Singular Terminal Sliding Mode Control for Target Tracking of Underactuated Underwater Robots with Prescribed Performance

Liwei Guo    
Weidong Liu    
Le Li    
Yichao Lou    
Xinliang Wang and Zhi Liu    

Resumen

This paper proposes a neural network-based nonsingular terminal sliding mode controller with prescribed performances for the target tracking problem of underactuated underwater robots. Firstly, the mathematical formulation of the target tracking problem is presented with an underactuated underwater robot model and the corresponding control objectives. Then, the target tracking errors from the line-of-sight guidance law are transformed using the prescribed performance technique to achieve good dynamic performance and steady-state performance that meet the pre-set conditions. Meanwhile, considering the model?s uncertainties and the external disturbances to the underwater robots, a target tracking controller is proposed based on the radial basis function (RBF) neural network and the non-singular terminal sliding mode control. Lyapunov stability analysis and homogeneity theory prove the tracking errors can converge on a small region that contains the origin with prescribed performance in finite time. In the simulation comparison, the controller proposed in this paper had better dynamic performance, steady-state performance and chattering supression. In particular, the steady-state error of the tracking error was lower, and the convergence time of the tracking error in the vertical distance was reduced by 19.1%.

 Artículos similares

       
 
Huihui Zhu, Hexiang Lin, Shaojun Wu, Wei Luo, Hui Zhang, Yuancheng Zhan, Xiaoting Wang, Aiqun Liu and Leong Chuan Kwek    
Integrated photonic chips leverage the recent developments in integrated circuit technology, along with the control and manipulation of light signals, to realize the integration of multiple optical components onto a single chip. By exploiting the power o... ver más
Revista: Information

 
Zhenyu Feng, Qianqian You, Kun Chen, Houjin Song and Haoxuan Peng    
Evacuation simulation is an important method for studying and evaluating the safety of passenger evacuation, and the key lies in whether it can accurately predict personnel evacuation behavior in different environments. The existing models have good adap... ver más
Revista: Aerospace

 
Ping Huang and Yafeng Wu    
Airborne speech enhancement is always a major challenge for the security of airborne systems. Recently, multi-objective learning technology has become one of the mainstream methods of monaural speech enhancement. In this paper, we propose a novel multi-o... ver más
Revista: Aerospace

 
Puti Yan, Zhen Cao, Jiangbo Peng, Chaobo Yang, Xin Yu, Penghua Qiu, Shanchun Zhang, Minghong Han, Wenbei Liu and Zuo Jiang    
A flame?s structural feature is a crucial parameter required to comprehensively understand the interaction between turbulence and flames. The generation and evolution processes of the structure feature have rarely been investigated in lean blowout (LBO) ... ver más
Revista: Aerospace

 
Gulsum Alicioglu and Bo Sun    
Deep learning (DL) models have achieved state-of-the-art performance in many domains. The interpretation of their working mechanisms and decision-making process is essential because of their complex structure and black-box nature, especially for sensitiv... ver más
Revista: AI