Resumen
Since few years ago only one typology of racks was used to store Grana cheese wheels for aging, which was designed focusing on the sole static behavior. Battened steel columns made by vertical tubes welded to horizontal angles were connected by means of wood boards supporting the wheels. In 2012, a strong earthquake occurred in Emilia Romagna (Italy) and a great number of these structures collapsed owing to the absence of checks for resistance against earthquakes. This catastrophic event plus the need to maximize the structural efficiency led to the development of a new typology of rack systems based on the use of cold-formed steel members. Owing to an extremely limited state-of-the-art on these modern cheese rack, design is carried out in agreement with the standard provisions calibrated and proposed for adjustable pallet racks, despite the non-negligible differences between these structural systems. The paper is focused on the comparison between the available seismic design approaches for cheese rack in order to highlight their main advantages and limits. In particular, among the four design approaches admitted in the European standards, the modal response spectrum analysis (MRSA) and the nonlinear time-history (NLTH) have been considered and the associated results compared in terms of maximum safety index of the members, global displacements and interstorey drifts. Research outcomes stress the differences associated with the considered approaches in terms of expected performance underlining the importance of an accurate definition of the behavior (q-) factor.