Redirigiendo al acceso original de articulo en 21 segundos...
Inicio  /  Algorithms  /  Vol: 16 Par: 9 (2023)  /  Artículo
ARTÍCULO
TITULO

Neural Network Based Approach to Recognition of Meteor Tracks in the Mini-EUSO Telescope Data

Mikhail Zotov    
Dmitry Anzhiganov    
Aleksandr Kryazhenkov    
Dario Barghini    
Matteo Battisti    
Alexander Belov    
Mario Bertaina    
Marta Bianciotto    
Francesca Bisconti    
Carl Blaksley    
Sylvie Blin    
Giorgio Cambiè    
Francesca Capel    
Marco Casolino    
Toshikazu Ebisuzaki    
Johannes Eser    
Francesco Fenu    
Massimo Alberto Franceschi    
Alessio Golzio    
Philippe Gorodetzky    
Fumiyoshi Kajino    
Hiroshi Kasuga    
Pavel Klimov    
Massimiliano Manfrin    
Laura Marcelli    
Hiroko Miyamoto    
Alexey Murashov    
Tommaso Napolitano    
Hiroshi Ohmori    
Angela Olinto    
Etienne Parizot    
Piergiorgio Picozza    
Lech Wiktor Piotrowski    
Zbigniew Plebaniak    
Guillaume Prévôt    
Enzo Reali    
Marco Ricci    
Giulia Romoli    
Naoto Sakaki    
Kenji Shinozaki    
Christophe De La Taille    
Yoshiyuki Takizawa    
Michal Vrábel and Lawrence WienckeaddShow full author listremoveHide full author list    

Resumen

Mini-EUSO is a wide-angle fluorescence telescope that registers ultraviolet (UV) radiation in the nocturnal atmosphere of Earth from the International Space Station. Meteors are among multiple phenomena that manifest themselves not only in the visible range but also in the UV. We present two simple artificial neural networks that allow for recognizing meteor signals in the Mini-EUSO data with high accuracy in terms of a binary classification problem. We expect that similar architectures can be effectively used for signal recognition in other fluorescence telescopes, regardless of the nature of the signal. Due to their simplicity, the networks can be implemented in onboard electronics of future orbital or balloon experiments.

 Artículos similares

       
 
Huihui Zhu, Hexiang Lin, Shaojun Wu, Wei Luo, Hui Zhang, Yuancheng Zhan, Xiaoting Wang, Aiqun Liu and Leong Chuan Kwek    
Integrated photonic chips leverage the recent developments in integrated circuit technology, along with the control and manipulation of light signals, to realize the integration of multiple optical components onto a single chip. By exploiting the power o... ver más
Revista: Information

 
Zeyu Xu, Wenbin Yu, Chengjun Zhang and Yadang Chen    
In the era of noisy intermediate-scale quantum (NISQ) computing, the synergistic collaboration between quantum and classical computing models has emerged as a promising solution for tackling complex computational challenges. Long short-term memory (LSTM)... ver más
Revista: Information

 
Ku Muhammad Naim Ku Khalif, Woo Chaw Seng, Alexander Gegov, Ahmad Syafadhli Abu Bakar and Nur Adibah Shahrul    
Convolutional Neural Networks (CNNs) have garnered significant utilisation within automated image classification systems. CNNs possess the ability to leverage the spatial and temporal correlations inherent in a dataset. This study delves into the use of ... ver más
Revista: Information

 
Zhenyu Feng, Qianqian You, Kun Chen, Houjin Song and Haoxuan Peng    
Evacuation simulation is an important method for studying and evaluating the safety of passenger evacuation, and the key lies in whether it can accurately predict personnel evacuation behavior in different environments. The existing models have good adap... ver más
Revista: Aerospace

 
Ping Huang and Yafeng Wu    
Airborne speech enhancement is always a major challenge for the security of airborne systems. Recently, multi-objective learning technology has become one of the mainstream methods of monaural speech enhancement. In this paper, we propose a novel multi-o... ver más
Revista: Aerospace