Redirigiendo al acceso original de articulo en 16 segundos...
Inicio  /  Water  /  Vol: 15 Par: 14 (2023)  /  Artículo
ARTÍCULO
TITULO

Simulation Study of CH4 and N2O Emission Fluxes from Rice Fields in Northeast China under Different Straw-Returning and Irrigation Methods Based on the DNDC Model

Dan Xu    
Zhongxue Zhang    
Tangzhe Nie    
Yanyu Lin and Tiecheng Li    

Resumen

In order to explore the long-term variation law of methane (CH4) and nitrous oxide (N2O) emissions from rice fields in cold regions under different straw-returning and irrigation methods, this study set up two irrigation methods, namely, conventional flooding and controlled irrigation, and two straw-returning quantities (0 t·hm-2 and 6 t·hm-2). Based on the field in situ test data, a sensitivity analysis of the main factors of the DNDC model affecting the emissions of CH4 and N2O from rice fields was conducted, and the emission fluxes of CH4 and N2O were calibrated and validated. Under different future climate scenarios (RCP4.5 and RCP8.5), greenhouse gas emissions from rice fields were simulated on a 60-year scale under different straw-returning and irrigation methods using the DNDC model. The results indicate that the DNDC model can effectively simulate the seasonal emission laws of CH4 and N2O from rice fields in cold regions under different straw-returning and irrigation methods. The simulated values have a significant correlation with the measured values (R2 = 0.794, p < 0.05), and the consistency is controlled within 30%. The soil texture, soil organic carbon (SOC) content, annual average temperature, and straw-returning amount are sensitive factors for CH4 emissions from rice fields. The total nitrogen fertilizer application amount and SOC content are sensitive factors for N2O emissions from rice fields. Over the next 60 years, under the two different emission scenarios of RCP4.5 and RCP8.5, straw returning combined with control irrigation has a good coupling effect on the GWP of rice fields, and compared with conventional flooding without straw returning, the GWP of rice fields is reduced by 31.41% and 34.13%, respectively, and the SOC content in 0?20 cm soil layer is increased by 54.69% and 52.80%, respectively. Thus, it can be used as a long-term carbon sequestration and emission reduction tillage model for rice fields in Northeast China. The results of this study can provide a reference for a further regional estimation of greenhouse gas emissions from rice fields using models.

 Artículos similares

       
 
Xiaoni Yang, Juanjuan Ma, Yongye Li, Xihuan Sun, Xiaomeng Jia and Yonggang Li    
Hydraulic transportation of the piped carriage is a new energy-saving and environmentally-friendly transportation mode. There are two main states in the conveying process, stationary and moving. In the process of hydraulic transportation of the piped car... ver más
Revista: Water

 
Yufan He, Can Luo, Li Cheng, Yandong Gu and Bin Gu    
The shaft-type tubular pumping station has the remarkable characteristics of a large flow rate and high efficiency. It can realize the functions of irrigation, pumping, and drainage through pumping and generating conditions considering tides. Moreover, i... ver más

 
Shoubo Shang, Xiangyu Wang, Qingnan Han, Peng Jia, Feihong Yun, Jing Wen, Chao Li, Ming Ju and Liquan Wang    
This paper proposes a version of the deep-sea environment simulated test system for subsea control modules to solve the problem of incomplete testing systems for electro-hydraulic subsea control modules. Based on the subsea control module test requiremen... ver más

 
Abhishek Phadke, F. Antonio Medrano, Tianxing Chu, Chandra N. Sekharan and Michael J. Starek    
UAV swarms have multiple real-world applications but operate in a dynamic environment where disruptions can impede performance or stop mission progress. Ideally, a UAV swarm should be resilient to disruptions to maintain the desired performance and produ... ver más
Revista: Aerospace

 
Idi Souley Tangam, Roland Yonaba, Dial Niang, Mahaman Moustapha Adamou, Amadou Keïta and Harouna Karambiri    
This study focuses on the Sirba River Basin (SRB), a transboundary West African catchment of 38,950 km2 shared by Burkina Faso and Niger, which contributes to flooding downstream in Niamey (Niger). The study uses the HEC-HMS hydrological model to explore... ver más
Revista: Hydrology