Redirigiendo al acceso original de articulo en 22 segundos...
Inicio  /  Agriculture  /  Vol: 14 Par: 1 (2024)  /  Artículo
ARTÍCULO
TITULO

Optimization of the Structural and Motion Parameters of Blade Cutters in Paddy Field Pulping Machines

Jinbo Ren    
Chongcheng Chen    
Difa Bao    
Wuxiong Weng and Shuhe Zheng    

Resumen

Blade cutters are a component in paddy field pulping machines that perform mud splashing, and the design of their structural and motion parameters will directly affect the splashed-mud volume and pulping-machine efficiency. Therefore, the optimization of the blade cutter?s structural and motion parameters is an important approach for improving the operating performance of paddy field pulping machines. In this study, based on the central-composite-design (CCD) method and a response-surface-method-based variance analysis, a regression-forecast model for the relationship between the splashing performance of the blade cutter and the blade?s structural and motion parameters was constructed to determine the influence of these parameters on the multi-dimensional splashing performance of blade cutters. Additionally, with the construction of a multi-objective performance-optimization model for pulping-machine blade cutters, the predicted optimal structural and motion parameters could be obtained based on the genetic algorithm. The ideal operating performance could be achieved when the blade turning radius was 180 mm, with a bending angle of 125°, a sub-cutter dip angle of 63°, a forward velocity of 0.15 m/s, and a rotating speed of 158 r/min. Verification of the optimization results in a bench test showed that the mean relative errors between the theoretical and experimental values of the mud volume and power consumption were 9.13% and 8.86%, respectively, revealing the high accuracy of the mud-volume and power-consumption models. Furthermore, there was a significant reduction in blade-cutter unit power consumption of 19.13%. These research results can provide a theoretical reference and technical support for blade-cutter optimization and improving pulping-machine performance.

 Artículos similares

       
 
Xinzhong Wang, Tianyu Hong, Weiquan Fang and Xingye Chen    
The technology of plastic film mulching is widely applied in Xinjiang, but it also brings about serious issues of residual film pollution. Currently, the 1MSF-2.0 residual film recovery machine can effectively address the problem. However, it faces chall... ver más
Revista: Agriculture

 
Hao Qi, Shi-Jie Cao, Jia-Yue Wu, Yi-Ming Peng, Hong Nie and Xiao-Hui Wei    
The tail-sitter VTOL UAV boasts not only high-speed cruising and air hovering capabilities, but also its unique tail-sitting vertical takeoff and landing and hovering attitude enable aerial operations with an exceptionally small cross-sectional area. Thi... ver más
Revista: Agriculture

 
Fu Zhang, Xinyue Wang, Xiahua Cui, Yubo Qiu, Shuai Teng, Shaukat Ali and Sanling Fu    
In order to improve the adhesive and passing performance of agricultural tracked vehicles under a non-structural environment, a theoretical design method of the structure of a bionic track pattern is proposed in this article. The Saanen goat is taken as ... ver más
Revista: Agriculture

 
Shaobo Ye, Xinchi Zhang, Qi Wang, Xin Li, Fenshan Hu, Haiyan Song and Decong Zheng    
Mechanical weeding is an important technical means for organic and regenerative agricultural systems. Current weed control equipment has a variety of problems, such as difficulty adapting to high-stalk crops and poor operational quality. A high-clearance... ver más
Revista: Agriculture

 
Deli Jiang, Xuegeng Chen, Limin Yan, Jinhao Zhang, Tao Wu and Xuanhe Fu    
Compared with the conventional horizontal conveyor-chain-type plastic-film-picking device, the longitudinal nail-tooth-chain-plate-type plastic-film-picking device developed by our team in the early stage has little tearing effect on the mulching film, a... ver más
Revista: Agriculture