Redirigiendo al acceso original de articulo en 23 segundos...
Inicio  /  Applied Sciences  /  Vol: 11 Par: 10 (2021)  /  Artículo
ARTÍCULO
TITULO

The Long-Term Consequences of Forest Fires on the Carbon Fluxes of a Tropical Forest in Africa

Rico Fischer    

Resumen

Tropical forests are an important component of the global carbon cycle, as they store large amounts of carbon. In some tropical regions, the forests are increasingly influenced by disturbances such as fires, which lead to structural changes but also alter species composition, forest succession, and carbon balance. However, the long-term consequences on forest functioning are difficult to assess. The majority of all global forest fires are found in Africa. In this study, a forest model was extended by a fire model to investigate the long-term effects of forest fires on biomass, carbon fluxes, and species composition of tropical forests at Mt. Kilimanjaro (Tanzania). According to this modeling study, forest biomass was reduced by 46% by fires and even by 80% when fires reoccur. Forest regeneration lasted more than 100 years to recover to pre-fire state. Productivity and respiration were up to 4 times higher after the fire than before the fire, which was mainly due to pioneer species in the regeneration phase. Considering the full carbon balance of the regrowing forest, it takes more than 150 years to compensate for the carbon emissions caused by the forest fire. However, functional diversity increases after a fire, as fire-tolerant tree species and pioneer species dominate a fire-affected forest area and thus alter the forest succession. This study shows that forest models can be suitable tools to simulate the dynamics of tropical forests and to assess the long-term consequences of fires.

Palabras claves