Redirigiendo al acceso original de articulo en 22 segundos...
Inicio  /  Water  /  Vol: 9 Par: 5 (2017)  /  Artículo
ARTÍCULO
TITULO

Upscaling Stem to Community-Level Transpiration for Two Sand-Fixing Plants: Salix gordejevii and Caragana microphylla

Limin Duan    
Yang Lv    
Xue Yan    
Tingxi Liu and Xixi Wang    

Resumen

The information on transpiration is vital for sustaining fragile ecosystem in arid/semiarid environment, including the Horqin Sandy Land (HSL) located in northeast China. However, such information is scarce in existing literature. The objectives of this study were to: (1) measure sap flow of selected individual stems of two sand-fixing plants, namely Salix gordejevii and Caragana microphylla, in HSL; and (2) upscale the measured stem-level sap flow for estimating the community-level transpiration. The measurements were done from 1 May to 30 September 2015 (i.e., during the growing season). The upscaling function was developed to have one dependent variable, namely sap flow rate, and two independent variables, namely stem cross-sectional area of Salix gordejevii and leaf area of Caragana microphylla. The results indicated that during the growing season, the total actual transpiration of the Salix gordejevii and Caragana microphylla communities was found to be 287 ± 31 and 197 ± 24 mm, respectively, implying that the Salix gordejevii community might consume 1.5 times more water than the Caragana microphylla community. For this same growing season, based on the Penman?Monteith equation, the total actual evapotranspiration for these two communities was estimated to be 323 and 229 mm, respectively. The daily transpiration from the upscaling function was well correlated with the daily evapotranspiration by the Penman?Monteith equation (coefficient of determination R2 = 0.67), indicating the applicability of this upscaling function, a useful tool for managing and restoring sand-fixing vegetations.

 Artículos similares