Redirigiendo al acceso original de articulo en 22 segundos...
Inicio  /  Applied Sciences  /  Vol: 12 Par: 24 (2022)  /  Artículo
ARTÍCULO
TITULO

Adaptive Active Positioning of Camellia oleifera Fruit Picking Points: Classical Image Processing and YOLOv7 Fusion Algorithm

Yunhe Zhou    
Yunchao Tang    
Xiangjun Zou    
Mingliang Wu    
Wei Tang    
Fan Meng    
Yunqi Zhang and Hanwen Kang    

Resumen

Camellia oleifera fruits are randomly distributed in an orchard, and the fruits are easily blocked or covered by leaves. In addition, the colors of leaves and fruits are alike, and flowers and fruits grow at the same time, presenting many ambiguities. The large shock force will cause flowers to fall and affect the yield. As a result, accurate positioning becomes a difficult problem for robot picking. Therefore, studying target recognition and localization of Camellia oleifera fruits in complex environments has many difficulties. In this paper, a fusion method of deep learning based on visual perception and image processing is proposed to adaptively and actively locate fruit recognition and picking points for Camellia oleifera fruits. First, to adapt to the target classification and recognition of complex scenes in the field, the parameters of the You Only Live Once v7 (YOLOv7) model were optimized and selected to achieve Camellia oleifera fruits? detection and determine the center point of the fruit recognition frame. Then, image processing and a geometric algorithm are used to process the image, segment, and determine the morphology of the fruit, extract the centroid of the outline of Camellia oleifera fruit, and then analyze the position deviation of its centroid point and the center point in the YOLO recognition frame. The frontlighting, backlight, partial occlusion, and other test conditions for the perceptual recognition processing were validated with several experiments. The results demonstrate that the precision of YOLOv7 is close to that of YOLOv5s, and the mean average precision of YOLOv7 is higher than that of YOLOv5s. For some occluded Camellia oleifera fruits, the YOLOv7 algorithm is better than the YOLOv5s algorithm, which improves the detection accuracy of Camellia oleifera fruits. The contour of Camellia oleifera fruits can be extracted entirely via image processing. The average position deviation between the centroid point of the image extraction and the center point of the YOLO recognition frame is 2.86 pixels; thus, the center point of the YOLO recognition frame is approximately considered to be consistent with the centroid point of the image extraction.

 Artículos similares

       
 
Jianan Xu, Yiming Wang, Junling Ma and Yong Zhan    
During the rough marine environment, heave compensation is used to offset the heave motion of the vessel when a marine crane lifts and lands the load. Thus, load motion and vessel motion are realized decoupled. In previous studies, the interference items... ver más

 
Muhammad Tahir Akhtar    
It is well-known that performance of the classical algorithms for active noise control (ANC) systems severely degrades when implemented for controlling the impulsive sources. The objective of this paper is to propose a new recursive least squares (RLS) a... ver más
Revista: Applied Sciences

 
Xin Qi, Chunyang Sheng, Yongbao Guo, Tao Su and Haixia Wang    
Aiming at the problem that online parameter identification, based on the Model Reference Adaptive System (MRAS), is easily affected by the high-frequency noise of the sensor, an improved MRAS, based on variable bandwidth linear Active Disturbance Rejecti... ver más
Revista: Applied Sciences

 
Ruben Tapia-Olvera, Francisco Beltran-Carbajal and Antonio Valderrabano-Gonzalez    
The synchronous generator is one of the most important active components in current electric power systems. New control methods should be designed to guarantee an efficient dynamic performance of the synchronous generator in strongly interconnected nonli... ver más
Revista: Applied Sciences

 
Xudong Han, Yongling Fu, Yan Wang, Mingkang Wang and Deming Zhu    
The control accuracy and stability of the electrohydrostatic actuator (EHA) are directly impacted by parameter uncertainty, disturbance uncertainty, and non-matching disturbance, which negatively impacts aircraft rudder maneuvering performance and even r... ver más
Revista: Aerospace