Redirigiendo al acceso original de articulo en 20 segundos...
Inicio  /  Algorithms  /  Vol: 15 Par: 1 (2022)  /  Artículo
ARTÍCULO
TITULO

Graph Based Feature Selection for Reduction of Dimensionality in Next-Generation RNA Sequencing Datasets

Consolata Gakii    
Paul O. Mireji and Richard Rimiru    

Resumen

Analysis of high-dimensional data, with more features (p" role="presentation">??p p ) than observations (N" role="presentation">??N N ) (p>N" role="presentation">??>??p>N p > N ), places significant demand in cost and memory computational usage attributes. Feature selection can be used to reduce the dimensionality of the data. We used a graph-based approach, principal component analysis (PCA) and recursive feature elimination to select features for classification from RNAseq datasets from two lung cancer datasets. The selected features were discretized for association rule mining where support and lift were used to generate informative rules. Our results show that the graph-based feature selection improved the performance of sequential minimal optimization (SMO) and multilayer perceptron classifiers (MLP) in both datasets. In association rule mining, features selected using the graph-based approach outperformed the other two feature-selection techniques at a support of 0.5 and lift of 2. The non-redundant rules reflect the inherent relationships between features. Biological features are usually related to functions in living systems, a relationship that cannot be deduced by feature selection and classification alone. Therefore, the graph-based feature-selection approach combined with rule mining is a suitable way of selecting and finding associations between features in high-dimensional RNAseq data.

 Artículos similares

       
 
Diego Sánchez-Moreno, Vivian F. López Batista, María Dolores Muñoz Vicente, Ángel Luis Sánchez Lázaro and María N. Moreno-García    
Information from social networks is currently being widely used in many application domains, although in the music recommendation area, its use is less common because of the limited availability of social data. However, most streaming platforms allow for... ver más
Revista: Information

 
Wen Tian, Yining Zhang, Ying Zhang, Haiyan Chen and Weidong Liu    
To fully leverage the spatiotemporal dynamic correlations in air traffic flow and enhance the accuracy of traffic flow prediction models, thereby providing a more precise basis for perceiving congestion situations in the air route network, a study was co... ver más
Revista: Aerospace

 
Lin Zhang, Yanbin Gao and Lianwu Guan    
For seabed mapping, the prevalence of autonomous underwater vehicles (AUVs) employing side-scan sonar (SSS) necessitates robust navigation solutions. However, the positioning errors of traditional strapdown inertial navigation system (SINS) and Doppler v... ver más

 
Longxin Yao, Yun Lu, Mingjiang Wang, Yukun Qian and Heng Li    
The construction of complex networks from electroencephalography (EEG) proves to be an effective method for representing emotion patterns in affection computing as it offers rich spatiotemporal EEG features associated with brain emotions. In this paper, ... ver más
Revista: Applied Sciences

 
Zengyu Cai, Chunchen Tan, Jianwei Zhang, Liang Zhu and Yuan Feng    
As network technology continues to develop, the popularity of various intelligent terminals has accelerated, leading to a rapid growth in the scale of wireless network traffic. This growth has resulted in significant pressure on resource consumption and ... ver más
Revista: Applied Sciences