Resumen
Thumb opposition is essential for grasping, and involves the flexion and abduction of the carpometacarpal and metacarpophalangeal joints of the thumb. The high number of degrees of freedom of the thumb in a fairly small space makes the in vivo recording of its kinematics a challenging task. For this reason, along with the very limited independence of the abduction movement of the metacarpophalangeal joint, many devices do not implement sensors to measure such movement, which may lead to important implications in terms of the accuracy of thumb models. The aims of this work are to examine the correlation between thumb joints and to obtain an equation that allows thumb metacarpophalangeal abduction/adduction movement to be estimated from the other joint motions of the thumb, during the commonest grasps used during activities of daily living and in free movement. The correlation analysis shows that metacarpophalangeal abduction/adduction movement can be expressed mainly from carpometacarpal joint movements. The model thus obtained presents a low estimation error (6.29°), with no significant differences between grasps. The results could benefit most fields that do not typically include this joint movement, such as virtual reality, teleoperation, 3D modeling, prostheses, and exoskeletons.