Redirigiendo al acceso original de articulo en 23 segundos...
Inicio  /  Algorithms  /  Vol: 17 Par: 1 (2024)  /  Artículo
ARTÍCULO
TITULO

Ensemble Heuristic?Metaheuristic Feature Fusion Learning for Heart Disease Diagnosis Using Tabular Data

Mohammad Shokouhifar    
Mohamad Hasanvand    
Elaheh Moharamkhani and Frank Werner    

Resumen

Heart disease is a global health concern of paramount importance, causing a significant number of fatalities and disabilities. Precise and timely diagnosis of heart disease is pivotal in preventing adverse outcomes and improving patient well-being, thereby creating a growing demand for intelligent approaches to predict heart disease effectively. This paper introduces an ensemble heuristic?metaheuristic feature fusion learning (EHMFFL) algorithm for heart disease diagnosis using tabular data. Within the EHMFFL algorithm, a diverse ensemble learning model is crafted, featuring different feature subsets for each heterogeneous base learner, including support vector machine, K-nearest neighbors, logistic regression, random forest, naive bayes, decision tree, and XGBoost techniques. The primary objective is to identify the most pertinent features for each base learner, leveraging a combined heuristic?metaheuristic approach that integrates the heuristic knowledge of the Pearson correlation coefficient with the metaheuristic-driven grey wolf optimizer. The second objective is to aggregate the decision outcomes of the various base learners through ensemble learning. The performance of the EHMFFL algorithm is rigorously assessed using the Cleveland and Statlog datasets, yielding remarkable results with an accuracy of 91.8% and 88.9%, respectively, surpassing state-of-the-art techniques in heart disease diagnosis. These findings underscore the potential of the EHMFFL algorithm in enhancing diagnostic accuracy for heart disease and providing valuable support to clinicians in making more informed decisions regarding patient care.

 Artículos similares

       
 
Aquib Raza, Thien-Luan Phan, Hung-Chung Li, Nguyen Van Hieu, Tran Trung Nghia and Congo Tak Shing Ching    
Knee osteoarthritis (KOA) is a leading cause of disability, particularly affecting older adults due to the deterioration of articular cartilage within the knee joint. This condition is characterized by pain, stiffness, and impaired movement, posing a sig... ver más
Revista: Information

 
Qingyong Zhang, Changhuan Song and Yiqing Yuan    
Vehicle gearboxes are subject to strong noise interference during operation, and the noise in the signal affects the accuracy of fault identification. Signal denoising and fault diagnosis processes are often conducted independently, overlooking their syn... ver más
Revista: Applied Sciences

 
Zeqin Tian, Dengfeng Chen and Liang Zhao    
Accurate building energy consumption prediction is a crucial condition for the sustainable development of building energy management systems. However, the highly nonlinear nature of data and complex influencing factors in the energy consumption of large ... ver más
Revista: Applied Sciences

 
Falah Amer Abdulazeez, Ismail Taha Ahmed and Baraa Tareq Hammad    
A significant quantity of malware is created on purpose every day. Users of smartphones and computer networks now mostly worry about malware. These days, malware detection is a major concern in the cybersecurity area. Several factors can impact malware d... ver más
Revista: Applied Sciences

 
Sheng He, Geng Niu, Xuefeng Sang, Xiaozhong Sun, Junxian Yin and Heting Chen    
Accurate and reliable discharge estimation plays an important role in water resource management as well as downstream applications such as ecosystem conservation and flood control. Recently, data-driven machine learning (ML) techniques showed seemingly i... ver más
Revista: Water