Redirigiendo al acceso original de articulo en 23 segundos...
Inicio  /  Applied Sciences  /  Vol: 10 Par: 15 (2020)  /  Artículo
ARTÍCULO
TITULO

Secondary Breakup Characteristics and Mechanism of Single Electrified Al/N-Decane Nanofluid Fuel Droplet in Electrostatic Field

Heng Lu    
Shengji Li    
Hongzhe Du    
Yibin Lu and Xuefeng Huang    

Resumen

The combustion characteristics of nanofluid fuels have been widely investigated, but rare studies on the atomization were reported. Atomization is an imperative and crucial step to improve the combustion performance of nanofluid fuels, and the secondary breakup of droplets is an important segment for atomization to produce uniform fine droplets and distribute nanoparticles in each droplet. This paper firstly presents the secondary breakup characteristics of single electrified Al/n-decane nanofluid fuel droplets and revealed the mechanism of the secondary breakup. The results demonstrated that fine droplets could be produced in the electrostatic field and Al nanoparticles were distributed in each droplet. Before the breakup, the single electrified droplets experienced surface charge transportation, deformation, and Taylor cone formation. A gradient of the electric field deformed the droplet to produce the Taylor cone. As the Taylor cones were stabilized, the fluid was extruded from the tips of stable Taylor cones to produce jet filament parallel to the electric field direction and correspondingly broke up into fine sub droplets. At the nanoparticle concentration range of 1.0~10 mg/mL, the minimum average diameter of breakup sub droplets could achieve ~55.4 µm at 6.0 mg/mL. The Al nanoparticle concentration had a significant effect on the breakup performance by influencing the physical properties and charging. The order of the Charge-to-Mass ratio magnitude was 10-7~10-5 C/kg. Furthermore, the secondary breakup mechanism of single electrified nanofluid fuel droplets in the uniform electrostatic field was revealed by analyzing the droplet surface charge, deformation, Taylor cone formation, and nanoparticle concentration effect.

 Artículos similares