Redirigiendo al acceso original de articulo en 22 segundos...
Inicio  /  Applied System Innovation  /  Vol: 2 Par: 1 (2019)  /  Artículo
ARTÍCULO
TITULO

Enhanced Gradient-Based Local Feature Descriptors by Saliency Map for Egocentric Action Recognition

Zheming Zuo    
Bo Wei    
Fei Chao    
Yanpeng Qu    
Yonghong Peng and Longzhi Yang    

Resumen

Egocentric video analysis is an important tool in healthcare that serves a variety of purposes, such as memory aid systems and physical rehabilitation, and feature extraction is an indispensable process for such analysis. Local feature descriptors have been widely applied due to their simple implementation and reasonable efficiency and performance in applications. This paper proposes an enhanced spatial and temporal local feature descriptor extraction method to boost the performance of action classification. The approach allows local feature descriptors to take advantage of saliency maps, which provide insights into visual attention. The effectiveness of the proposed method was validated and evaluated by a comparative study, whose results demonstrated an improved accuracy of around 2%.

 Artículos similares