Redirigiendo al acceso original de articulo en 18 segundos...
Inicio  /  Future Internet  /  Vol: 14 Par: 12 (2022)  /  Artículo
ARTÍCULO
TITULO

ERGCN: Enhanced Relational Graph Convolution Network, an Optimization for Entity Prediction Tasks on Temporal Knowledge Graphs

Yinglin Wang and Xinyu Xu    

Resumen

Reasoning on temporal knowledge graphs, which aims to infer new facts from existing knowledge, has attracted extensive attention and in-depth research recently. One of the important tasks of reasoning on temporal knowledge graphs is entity prediction, which focuses on predicting the missing objects in facts at current time step when relevant histories are known. The problem is that, for entity prediction task on temporal knowledge graphs, most previous studies pay attention to aggregating various semantic information from entities but ignore the impact of semantic information from relation types. We believe that relation types is a good supplement for our task and making full use of semantic information of facts can promote the results. Therefore, a framework of Enhanced Relational Graph Convolution Network (ERGCN) is put forward in this paper. Rather than only considering representations of entities, the context semantic information of both relations and entities is considered and merged together in this framework. Experimental results show that the proposed approach outperforms the state-of-the-art methods.

 Artículos similares

       
 
Liufeng Tao, Kai Ma, Miao Tian, Zhenyang Hui, Shuai Zheng, Junjie Liu, Zhong Xie and Qinjun Qiu    
The efficient and precise retrieval of desired information from extensive geological databases is a prominent and pivotal focus within the realm of geological information services. Conventional information retrieval methods primarily rely on keyword matc... ver más

 
Zhixin Li, Song Ji, Dazhao Fan, Zhen Yan, Fengyi Wang and Ren Wang    
Accurate building geometry information is crucial for urban planning in constrained spaces, fueling the growing demand for large-scale, high-precision 3D city modeling. Traditional methods like oblique photogrammetry and LiDAR prove time consuming and ex... ver más

 
Priyank Kalgaonkar and Mohamed El-Sharkawy    
Accurate perception is crucial for autonomous vehicles (AVs) to navigate safely, especially in adverse weather and lighting conditions where single-sensor networks (e.g., cameras or radar) struggle with reduced maneuverability and unrecognizable targets.... ver más
Revista: Future Internet

 
Dominik Warch, Patrick Stellbauer and Pascal Neis    
In the digital transformation era, video media libraries? untapped potential is immense, restricted primarily by their non-machine-readable nature and basic search functionalities limited to standard metadata. This study presents a novel multimodal metho... ver más
Revista: Future Internet

 
Yee Sye Lee, Ali Rashidi, Amin Talei and Daniel Kong    
In recent years, mixed reality (MR) technology has gained popularity in construction management due to its real-time visualisation capability to facilitate on-site decision-making tasks. The semantic segmentation of building components provides an attrac... ver más
Revista: Buildings