Resumen
Three types of multi-wall shielding were experimentally investigated for their performances under the high-velocity impact of a cm-size cylindrical projectile by using a two-stage light-gas gun. The three shields contained the same two aluminum bumpers but different rear walls, which were 7075-T651 aluminum (Al) plate, boron carbide (B4C)/Al 7075-T651/Kevlar composite plate and B4C/ultra-high molecular weight polyethylene (UHMW-PE) composite plate. The impact test was carried out using a cylindrical shape of 6 g mass 7075-T651 Al projectile in a speed range (1.6 to 1.9 km/s) to achieve an effective shield configuration. A numerical simulation was undertaken by using ANSYS Autodyn-3D and the results of this were in good agreement with the experimental results. Meanwhile, both the experimental and the numerical simulation results indicated that B4C/UHMW-PE composite plates performed a better interception of the high-velocity projectiles within the specific speed range and could be considered as a good configuration for intercepting large fragments in shielding design.