Redirigiendo al acceso original de articulo en 19 segundos...
ARTÍCULO
TITULO

Implementation of the Listen-Before-Talk Mode for SeaSonde High-Frequency Ocean Radars

Simone Cosoli    

Resumen

The International Telecommunication Union (ITU) Resolution 612, in combination with Report ITU-R M2.234 (11/2011) and Recommendation ITU-R M.1874-1 (02/2013), regulates the use of the radiolocation services between 3 and 50 MHz to support high frequency oceanographic radar (HFR) operations. The operational frame for HFR systems include: band sharing capabilities, such as synchronization of the signal modulation; pulse shaping and multiple levels of filtering, to reduce out-of-band interferences; low radiated power; directional transmission antenna, to reduce emission over land. Resolution 612 also aims at reducing the use of spectral bands, either through the application of existing band-sharing capabilities, the reduction of the spectral leakage to neighboring frequency bands, or the development and implementation of listen-before-talk (LBT) capabilities. While the LBT mode is operational and commonly used at several phased-array HFR installations, the implementation to commercial direction-finding systems does not appear to be available yet. In this paper, a proof-of-concept is provided for the implementation of the LBT mode for commercial SeaSonde HFRs deployed in Australia, with potential for applications in other networks and installations elsewhere. Potential critical aspects for systems operated under this configuration are also pointed out. Both the receiver and the transmitter antennas may lose efficiency if the frequency offset from the resonant frequency or calibration pattern are too large. Radial resolution clearly degrades when a dynamical adaptation of the bandwidth is performed, which results in non-homogeneous spatial resolution and reduction of the quality of the data. A recommendation would be to perform the LBT-adapt scans after a full measurement cycle (1-h or 3-h, depending on the system configuration) is concluded. Mutual cross-interference from clock offsets between two HFR systems may bias the frequency scans when the site computers controlling data acquisitions are not properly time-synchronized.

 Artículos similares

       
 
Kaijun Song, Lele Fang and Yedi Zhou    
In this paper, a novel kind of mode composite transmission line (MC-TL) is proposed, and a dual-band power divider with a large frequency ratio using this novel MC-TL for 5G communication systems was developed. The proposed MC-TL was developed using spoo... ver más

 
Thaiënne A. G. P. Van Dijk, Marc Roche, Xavier Lurton, Ridha Fezzani, Stephen M. Simmons, Sven Gastauer, Peer Fietzek, Chris Mesdag, Laurent Berger, Mark Klein Breteler and Dan R. Parsons    
For health and impact studies of water systems, monitoring underwater environments is essential, for which multi-frequency single- and multibeam echosounders are commonly used state-of-the-art technologies. However, the current scarcity of sediment refer... ver más

 
Hexin Lu, Xiaodong Zhu, Jingwei Cui and Haifeng Jiang    
The process of iris recognition can result in a decline in recognition performance when the resolution of the iris images is insufficient. In this study, a super-resolution model for iris images, namely SwinGIris, which combines the Swin Transformer and ... ver más
Revista: Algorithms

 
Konstantin Gaipov, Daniil Tausnev, Sergey Khodenkov, Natalya Shepeta, Dmitry Malyshev, Aleksey Popov and Lev Kazakovtsev    
Rapid growth in the volume of transmitted information has lead to the emergence of new wireless networking technologies with variable heterogeneous topologies. With limited radio frequency resources, optimal routing problems arise, both at the network de... ver más
Revista: Algorithms

 
Yan Liu and Zhichun Lei    
Mitigating low-frequency noise in various industrial applications often involves the use of the filter-x least mean squares (FxLMS) algorithm, which relies on the mean square error criterion. This algorithm has demonstrated effectiveness in reducing nois... ver más
Revista: Applied Sciences